Skip to main content

Ensemble Strategy Based on Deep Reinforcement Learning for Portfolio Optimization

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14120))

  • 1070 Accesses

Abstract

Although deep reinforcement learning for portfolio optimization has attracted the attention of more and more researchers, existing research focuses on the improvement of a single algorithm. According to No Free Lunch Theorem (NFL), single algorithms are always limited, especially in complex financial environment. In this paper, an ensemble strategy that combines the advantages of three deep reinforcement learning algorithms is proposed to select appropriate agents at different stages. The ensemble strategy is composed of Deep Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC) and Twin Delayed Deep Deterministic Policy Gradient (TD3). Compared with other model and algorithms, our model on experimental datasets shows better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y., Zhao, P., Wu, Q., et al.: Cost-sensitive portfolio selection via deep reinforcement learning. IEEE Trans. Knowl. Data Eng. 34(1), 236–248 (2022)

    Google Scholar 

  2. Tianxin, L., Xiaoping, Y., Liang, W., et al.: Research and development of financial trading system based on reinforcement learning. J. Softw. 30(03), 845–864 (2019)

    MathSciNet  Google Scholar 

  3. Bing, Y., Ting, L., Jian, X., et al.: Deep reinforcement learning based on transformer and U-Net framework for stock trading. Knowl.-Based Syst. 262, 1–10 (2023)

    Google Scholar 

  4. Tianxiang, C., Shusheng, D., Huan, J., et al.: Portfolio constructions in cryptocurrency market: A CVaR-based deep reinforcement learning approach. Econ. Model. 119, 1–9 (2023)

    Google Scholar 

  5. Giulio, M., Raffaele, M.: Shrinkage estimation with reinforcement learning of large variance matrices for portfolio selection. Intell. Syst. Appl. 17, 1–11 (2023)

    Google Scholar 

  6. Jie, X., Yukun, Z., Chunxiao, X.: Research on financial trading algorithms based on deep reinforcement learning. Comput. Eng. Appl. 58(07), 276–285 (2022)

    Google Scholar 

  7. Hyungjun, P., Kyu, S.M., Gu, C.D.: An intelligent financial portfolio trading strategy using deep Q-learning. Expert Syst. Appl. 158, 1–16 (2020)

    Google Scholar 

  8. Mohamed, A.A., Xu, Z., Lee, C.-G.: What is the value of the cross-sectional approach to deep reinforcement learning? Quantitative Finan. 22(6), 1091–1111 (2022)

    Google Scholar 

  9. Tuomas, H., Aurick, Z., Pieter, A., et al.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: Proceedings of the 35th International Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

    Google Scholar 

  10. Lillicrap Timothy, P., Hunt Jonathan, J., Alexander, P., et al.: Continuous control with deep reinforcement learning. In: International Conference on Learning Representations (2016)

    Google Scholar 

  11. Scott, F., van Herke, H., David, M.: Addressing function approximation error in actor-critic methods. In: Proceedings of the 35th International Conference on Machine Learning, pp. 1587–1596. PMLR (2018)

    Google Scholar 

  12. Yang, H., Liu, X.-Y., Zhong, S., et al.: Deep reinforcement learning for automated stock trading: an ensemble strategy. In: Proceedings of the First ACM International Conference on AI in Finance, pp. 1–8. Association for Computing Machinery, New York (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (2021A1515012298), the Project of Philosophy and Social Science Planning of Guangdong (GD21YGL16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, X., Zhou, Y., He, S., Li, X. (2023). Ensemble Strategy Based on Deep Reinforcement Learning for Portfolio Optimization. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14120. Springer, Cham. https://doi.org/10.1007/978-3-031-40292-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40292-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40291-3

  • Online ISBN: 978-3-031-40292-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics