Skip to main content

Learning Category Discriminability for Active Domain Adaptation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14120))

  • 650 Accesses

Abstract

Active Domain Adaptation (ADA) attempts to improve the adaptation performance on a target domain by annotating informative target data with a limited budget. Previous ADA methods have significantly advanced by incorporating domain representativeness and predictive uncertainty. However, they only focus on domain-level alignment and ignore the category discriminability of two domains, which may cause classwise mismatching. These mismatched data are overlooked by the above query strategy. To solve this, a Learning Category Discriminability approach is proposed for active domain adaptation. Specifically, it achieves semantic-level alignment and selects the informative target data consistent with the domain adaptation based on task-specific classifiers. To overcome the class imbalance from the small queried data, progressive augmentation of the queried set with confident pseudo labels is designed in our work. In addition, discriminability and diversity learning for unlabeled target samples are performed to improve the reliability of pseudo labels, which makes the classification boundaries more applicable to the target domain. Extensive experiments on two benchmarks, Office-31 and Office-Home, demonstrate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachman, P., Sordoni, A., Trischler, A.: Learning algorithms for active learning. In: International Conference on Machine Learning, pp. 301–310 (2017)

    Google Scholar 

  2. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: batch nuclear-norm maximization under label insufficient situations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3941–3950 (2020)

    Google Scholar 

  3. Dagan, I., Engelson, S.P.: Committee-based sampling for training probabilistic classifiers. In: Machine Learning Proceedings 1995, pp. 150–157. Elsevier (1995)

    Google Scholar 

  4. Dasgupta, S.: Two faces of active learning. Theoret. Comput. Sci. 412(19), 1767–1781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, B., Cao, Z., Wang, J., Long, M.: Transferable query selection for active domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7272–7281 (2021)

    Google Scholar 

  6. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, pp. 529–536 (2004)

    Google Scholar 

  7. Gretton, A., Borgwardt, K., Rasch, M.J., Scholkopf, B., Smola, A.J.: A kernel method for the two-sample problem. arXiv preprint arXiv:0805.2368 (2008)

  8. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)

    Google Scholar 

  9. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced Wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10285–10295 (2019)

    Google Scholar 

  10. Li, S., Gong, K., Xie, B., Liu, C.H., Cao, W., Tian, S.: Critical classes and samples discovering for partial domain adaptation. IEEE Trans. Cybern. 1–14 (2022)

    Google Scholar 

  11. Li, S., et al.: Transferable semantic augmentation for domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11516–11525 (2021)

    Google Scholar 

  12. Long, M., Cao, Y., Cao, Z., Wang, J., Jordan, M.I.: Transferable representation learning with deep adaptation networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 3071–3085 (2018)

    Article  Google Scholar 

  13. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  14. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. arXiv e-prints, arXiv-1705 (2017)

    Google Scholar 

  15. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. arXiv e-prints, arXiv-1602 (2016)

    Google Scholar 

  16. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.: Label efficient learning of transferable representations across domains and tasks. arXiv e-prints, arXiv-1712 (2017)

    Google Scholar 

  17. de Mathelin, A., Deheeger, F., Mougeot, M., Vayatis, N.: Discrepancy-based active learning for domain adaptation. arXiv preprint arXiv:2103.03757 (2021)

  18. Motiian, S., Jones, Q., Iranmanesh, S.M., Doretto, G.: Few-shot adversarial domain adaptation. arXiv e-prints, arXiv-1711 (2017)

    Google Scholar 

  19. Nie, Z., Lin, Y., Yan, M., Cao, Y., Ning, S.: An adversarial training method for improving model robustness in unsupervised domain adaptation. In: Knowledge Science, Engineering and Management (KSEM), pp. 3–13 (2021)

    Google Scholar 

  20. Prabhu, V., Chandrasekaran, A., Saenko, K., Hoffman, J.: Active domain adaptation via clustering uncertainty-weighted embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8505–8514 (October 2021)

    Google Scholar 

  21. Rangwani, H., Jain, A., Aithal, S.K., Babu, R.V.: S3Vaada: submodular subset selection for virtual adversarial active domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7516–7525, October 2021

    Google Scholar 

  22. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. 54(9), 1–40 (2021)

    Article  Google Scholar 

  23. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)

    Google Scholar 

  24. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)

  25. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 287–294 (1992)

    Google Scholar 

  26. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A dirt-t approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735 (2018)

  27. Su, J.C., Tsai, Y.H., Sohn, K., Liu, B., Maji, S., Chandraker, M.: Active adversarial domain adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 739–748 (2020)

    Google Scholar 

  28. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  29. Wang, D., Shang, Y.: A new active labeling method for deep learning. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 112–119. IEEE (2014)

    Google Scholar 

  30. Wang, J., Chen, Y., Hao, S., Feng, W., Shen, Z.: Balanced distribution adaptation for transfer learning. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 1129–1134. IEEE (2017)

    Google Scholar 

  31. Xie, B., Li, S., Lv, F., Liu, C.H., Wang, G., Wu, D.: A collaborative alignment framework of transferable knowledge extraction for unsupervised domain adaptation. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  32. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1426–1435 (2019)

    Google Scholar 

  33. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Li, M., Zhang, W., Gong, L., Zhang, Z. (2023). Learning Category Discriminability for Active Domain Adaptation. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14120. Springer, Cham. https://doi.org/10.1007/978-3-031-40292-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40292-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40291-3

  • Online ISBN: 978-3-031-40292-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics