Skip to main content

Task Inference for Offline Meta Reinforcement Learning via Latent Shared Knowledge

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14120))

  • 691 Accesses

Abstract

Offline Reinforcement Learning (RL) has emerged as a promising approach for learning from existing data without requiring online interactions. However, traditional offline RL algorithms often suffer from poor generalization and overfitting due to limited task diversity in the training data. In this paper, we propose a novel framework called Meta-Task (MeTask) for offline RL that leverages meta-learning techniques to learn a task representation from a diverse set of offline training tasks. Specifically, we introduce a task-shared meta-learning objective that extracts meta-knowledge from the context data of each task and uses it to learn a more generalizable task representation. Additionally, we design a task-infer module that restores the learned meta-knowledge and task-specific information between different tasks to achieve efficient transfer of knowledge. Experiments on a variety of benchmark tasks demonstrate that MeTask achieves state-of-the-art performance compared to traditional offline RL algorithms. These results suggest that leveraging task diversity and meta-learning techniques can significantly improve the efficiency of offline RL methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, J., Vuorio, R., Liu, E.Z., et al.: A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028 (2023)

  2. Bousmalis, K., Trigeorgis, G., Silberman, N., et al.: Domain separation networks. In: NeurIPS, vol. 29 (2016)

    Google Scholar 

  3. Dorfman, R., Shenfeld, I., Tamar, A.: Offline meta reinforcement learning-identifiability challenges and effective data collection strategies. In: NeurIPS, vol. 34, pp. 4607–4618 (2021)

    Google Scholar 

  4. Haarnoja, T., Zhou, A., Abbeel, P., et al.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: ICML, pp. 1861–1870. PMLR (2018)

    Google Scholar 

  5. Humplik, J., Galashov, A., Hasenclever, L., et al.: Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424 (2019)

  6. Johannink, T., Bahl, S., Nair, A., et al.: Residual reinforcement learning for robot control. In: ICRA, pp. 6023–6029. IEEE (2019)

    Google Scholar 

  7. Kiran, B.R., Sobh, I., Talpaert, V., et al.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23(6), 4909–4926 (2021)

    Article  Google Scholar 

  8. Levine, S., Kumar, A., Tucker, G., et al.: Offline reinforcement learning: tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643 (2020)

  9. Li, L., Huang, Y., Chen, M., et al.: Provably improved context-based offline meta-RL with attention and contrastive learning. arXiv preprint arXiv:2102.10774 (2021)

  10. Li, L., Yang, R., Luo, D.: Focal: efficient fully-offline meta-reinforcement learning via distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112 (2020)

  11. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  12. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  13. Nagabandi, A., Clavera, I., Liu, S., et al.: Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv preprint arXiv:1803.11347 (2018)

  14. Rakelly, K., Zhou, A., Finn, C., et al.: Efficient off-policy meta-reinforcement learning via probabilistic context variables. In: ICML, pp. 5331–5340. PMLR (2019)

    Google Scholar 

  15. Ye, D., Liu, Z., Sun, M., et al.: Mastering complex control in MOBA games with deep reinforcement learning. In: AAAI, vol. 34, pp. 6672–6679 (2020)

    Google Scholar 

  16. Yu, C., Liu, J., Nemati, S., Yin, G.: Reinforcement learning in healthcare: a survey. ACM Comput. Surv. (CSUR) 55(1), 1–36 (2021)

    Article  Google Scholar 

  17. Yuan, H., Lu, Z.: Robust task representations for offline meta-reinforcement learning via contrastive learning. In: ICML, pp. 25747–25759. PMLR (2022)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (No. 62076259), Fundamental and Applicational Research Funds of Guangdong province (No. 2023A1515012946), and Fundamental Research Funds for the Central Universities-Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Cong, S., Yu, C. (2023). Task Inference for Offline Meta Reinforcement Learning via Latent Shared Knowledge. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14120. Springer, Cham. https://doi.org/10.1007/978-3-031-40292-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40292-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40291-3

  • Online ISBN: 978-3-031-40292-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics