Abstract
Android applications are proliferating, which has led to the rise of android malware. Many research studies have proposed various detection frameworks for android malware detection. Literature suggests that static malware detection techniques are practical and assuring for detecting android malware. This paper presents a thorough survey of data mining-based static malware detection. We briefly discuss the growth of android malware and current detection techniques and offer a comprehensive analysis and summary of studies for each data mining-based malware detection phase, such as data acquisition, preprocessing, feature extraction, learning algorithms, and evaluation. Finally, we highlight some challenges and open issues in data mining-based android malware detection. This review will help understand the complete picture of static android malware detection and serve as a basis for malware detection in general.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Android - Statistics & Facts. https://www.statista.com/topics/876/android/
Development of new android malware worldwide. https://www.statista.com/statistics/680705/global-android-malware-volume/
Almahmoud, M., Alzu’bi, D., Yaseen, Q.: ReDroidDet: android malware detection based on recurrent neural network. Procedia Comput. Sci. 184, 841–846 (2021)
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: effective and explainable detection of android malware in your pocket. In: Network and Distributed System Security Symposium (NDSS), vol. 14, pp. 23–26 (2014)
Booz, J., McGiff, J., Hatcher, W.G., Yu, W., Nguyen, J., Lu, C.: Tuning deep learning performance for android malware detection. In: 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 140–145. IEEE (2018)
Borders, K., Prakash, A.: Web tap: detecting covert web traffic. In: 11th ACM Conference on Computer and Communications Security (CCS), pp. 110–120 (2004)
Cai, M., Jiang, Y., Gao, C., Yuan, W.: Learning features from enhanced function call graphs for android malware detection. Neurocomputing 423, 301–307 (2021)
Chan, P.P., Song, W.K.: Static detection of Android malware by using permissions and API calls. In: International Conference on Machine Learning and Cybernetics, vol. 1, pp. 82–87. IEEE (2014)
Craig-Lees, M.: Sense making: trojan horse? Pandora’s box? Psychol. Mark. 18(5), 513–526 (2001)
Fereidooni, H., Conti, M., Yao, D., Sperduti, A.: ANASTASIA: ANdroid mAlware detection using STatic analySIs of applications. In: 8th International Conference on New Technologies, Mobility and Security, pp. 1–5. IEEE (2016)
Gao, T., Peng, W., Sisodia, D., Saha, T.K., Li, F., Al Hasan, M.: Android malware detection via graphlet sampling. IEEE Trans. Mob. Comput. 18(12), 2754–2767 (2018)
Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of android malware using embedded call graphs. In: ACM Workshop on Artificial Intelligence and Security, pp. 45–54 (2013)
Hota, A., Irolla, P.: Deep neural networks for android malware detection. In: International Conference on Information Systems Security and Privacy (ICISSP), pp. 657–663. IEEE (2019)
Hou, S., Saas, A., Ye, Y., Chen, L.: DroidDelver: an android malware detection system using deep belief network based on API call blocks. In: Song, S., Tong, Y. (eds.) WAIM 2016. LNCS, vol. 9998, pp. 54–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47121-1_5
Huang, N., Xu, M., Zheng, N., Qiao, T., Choo, K.K.R.: Deep android malware classification with API-based feature graph. In: IEEE TrustCom/BigDataSE, pp. 296–303. IEEE (2019)
Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowl. Data Eng. 16(12), 1457–1471 (2004)
Jerome, Q., Allix, K., State, R., Engel, T.: Using opcode-sequences to detect malicious android applications. In: IEEE ICC, pp. 914–919. IEEE (2014)
Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic framework for android malware detection using deep learning. Digit. Investig. 24, S48–S59 (2018)
Kim, J., Ban, Y., Ko, E., Cho, H., Yi, J.H.: MAPAS: a practical deep learning-based android malware detection system. Int. J. Inf. Secur. 21, 1–14 (2022)
Kiss, N., Lalande, J.F., Leslous, M., Tong, V.V.T.: Kharon dataset: android malware under a microscope. In: The LASER Workshop 2016, pp. 1–12 (2016)
Koli, J.: RanDroid: android malware detection using random machine learning classifiers. In: IEEE ICSESP. pp. 1–6. IEEE (2018)
Lee, J., Jang, H., Ha, S., Yoon, Y.: Android malware detection using ml with feature selection based on the genetic algorithm. Mathematics 9(21), 2813 (2021)
Lee, W.Y., Saxe, J., Harang, R.: SeqDroid: obfuscated android malware detection using stacked convolutional and recurrent neural networks. In: Alazab, M., Tang, M.J. (eds.) Deep Learning Applications for Cyber Security. ASTSA, pp. 197–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13057-2_9
Li, D., Wang, Z., Xue, Y.: Fine-grained android malware detection based on deep learning. In: IEEE CNS, pp. 1–2. IEEE (2018)
Li, X., Liu, J., Huo, Y., Zhang, R., Yao, Y.: An android malware detection method based on AndroidManifest file. In: IEEE CCIS, pp. 239–243. IEEE (2016)
Liu, K., Xu, S., Xu, G., Sun, D., Liu, H.: A review of android malware detection approaches based on machine learning. IEEE Access 8, 124579–124607 (2020)
Lou, S., Cheng, S., Huang, J., Jiang, F.: TFDroid: android malware detection by topics and sensitive data flows using machine learning techniques. In: International Conference on Information and Computer Technologies, pp. 30–36. IEEE (2019)
Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an extended insight into the obfuscation effects on android malware. Comput. Secur. 51, 16–31 (2015)
Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: Context-aware, adaptive, and scalable android malware detection through online learning. IEEE Trans. Emerg. Top. Comput. Intell. 1(3), 157–175 (2017)
Oak, R., Du, M., Yan, D., Takawale, H., Amit, I.: Malware detection on highly imbalanced data through sequence modeling. In: 12th ACM Workshop on Artificial Intelligence and Security, pp. 37–48 (2019)
Pan, Y., Ge, X., Fang, C., Fan, Y.: A systematic literature review of android malware detection using static analysis. IEEE Access 8, 116363–116379 (2020)
Rathore, H., Agarwal, S., Sahay, S.K., Sewak, M.: Malware detection using machine learning and deep learning. In: Mondal, A., Gupta, H., Srivastava, J., Reddy, P.K., Somayajulu, D.V.L.N. (eds.) BDA 2018. LNCS, vol. 11297, pp. 402–411. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04780-1_28
Rathore, H., Nikam, P., Sahay, S.K., Sewak, M.: Identification of adversarial android intents using reinforcement learning. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)
Rathore, H., Sahay, S.K., Rajvanshi, R., Sewak, M.: Identification of significant permissions for efficient android malware detection. In: Gao, H., J. Durán Barroso, R., Shanchen, P., Li, R. (eds.) BROADNETS 2020. LNICST, vol. 355, pp. 33–52. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68737-3_3
Rathore, H., Sahay, S.K., Thukral, S., Sewak, M.: Detection of malicious android applications: classical machine learning vs. deep neural network integrated with clustering. In: Gao, H., J. Durán Barroso, R., Shanchen, P., Li, R. (eds.) BROADNETS 2020. LNICST, vol. 355, pp. 109–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68737-3_7
Rathore, H., Samavedhi, A., Sahay, S.K., Sewak, M.: Robust malware detection models: learning from adversarial attacks and defenses. Forensic Sci. Int.: Digit. Invest. 37, 301183 (2021)
Sarma, B.P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Android permissions: a perspective combining risks and benefits. In: 17th ACM symposium on Access Control Models and Technologies, pp. 13–22 (2012)
Sewak, M., Sahay, S.K., Rathore, H.: DeepIntent: implicitintent based android IDS with E2E deep learning architecture. In: IEEE PIMRC, pp. 1–6. IEEE (2020)
Sewak, M., Sahay, S.K., Rathore, H.: Value-approximation based deep reinforcement learning techniques: an overview. In: International Conference on Computing Communication and Automation, pp. 379–384. IEEE (2020)
Sewak, M., Sahay, S.K., Rathore, H.: Deep reinforcement learning for cybersecurity threat detection and protection: A review. In: Krishnan, R., Rao, H.R., Sahay, S.K., Samtani, S., Zhao, Z. (eds.) SKM 2021. CCISv, vol. 1549, pp. 51–72. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-97532-6_4
Sewak, M., Sahay, S.K., Rathore, H.: DRLDO: a novel DRL based de-obfuscation system for defence against metamorphic malware. Def. Sci. J. 71(1), 55–65 (2021)
Sewak, M., Sahay, S.K., Rathore, H.: Policy-approximation based deep reinforcement learning techniques: an overview. In: Joshi, A., Mahmud, M., Ragel, R.G., Thakur, N.V. (eds.) Information and Communication Technology for Competitive Strategies (ICTCS 2020). LNNS, vol. 191, pp. 493–507. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-0739-4_47
Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying android applications using machine learning. In: International Conference on Computational Intelligence and Security, pp. 329–333. IEEE (2010)
Sharma, A., Sahay, S.K.: Group-wise classification approach to improve android malicious apps detection accuracy. arXiv preprint arXiv:1904.02122 (2019)
Spafford, E.H.: The internet worm program: an analysis. ACM SIGCOMM Comput. Commun. Rev. 19(1), 17–57 (1989)
Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In: M. Hämmerli, B., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73614-1_6
Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley Professional (2005)
Tan, D.J., Chua, T.W., Thing, V.L.: Securing android: a survey, taxonomy, and challenges. ACM Comput. Surv. (CSUR) 47(4), 1–45 (2015)
Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of current android malware. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp. 252–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60876-1_12
Yang, M., Wen, Q.: Detecting android malware by applying classification techniques on images patterns. In: IEEE ICCCBDA, pp. 344–347. IEEE (2017)
Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-sec: deep learning in android malware detection. In: ACM Conference on SIGCOMM, pp. 371–372 (2014)
Zhang, X., Mathur, A., Zhao, L., Rahmat, S., Javaid, A., Yang, X.: An early detection of android malware using system calls based machine learning model. In: International Conference on Availability, Reliability and Security, pp. 1–9 (2022)
Zhang, Y., Yang, M., Yang, Z., Gu, G., Ning, P., Zang, B.: Permission use analysis for vetting undesirable behaviors in android apps. IEEE Trans. Inf. Forensics Secur. 9(11), 1828–1842 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Rathore, H., Chari, S., Verma, N., Sahay, S.K., Sewak, M. (2023). Android Malware Detection Based on Static Analysis and Data Mining Techniques: A Systematic Literature Review. In: Wang, W., Wu, J. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-031-40467-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-40467-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40466-5
Online ISBN: 978-3-031-40467-2
eBook Packages: Computer ScienceComputer Science (R0)