Skip to main content

Application of Anomaly Detection Models to Malware Detection in the Presence of Concept Drift

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

Machine learning is one of the main approaches to malware detection in the literature, since machine learning models are more adaptive than signature based solutions. One of the main challenges in the application of machine learning to malware detection is the presence of concept drift, which is a change in the data distribution over time. To tackle drift, online models that can be dynamically updated passively or by actively detecting change are applied. However, these models require new instances to be labelled to update the model. Usually, labels are scarce, cannot be obtained immediately and the presence of imbalance in the data make the construction of an effective model difficult. It has been studied that concept drift has a lower impact on benign instances, so we test the effectiveness of anomaly detection models to detect malware in the presence of concept drift. Anomaly detection models only need benign instances for training, and therefore may be less affected by the scarcity of labelled malicious instances. The results show that anomaly detection models achieve better results than supervised online models in conditions of heavy data imbalance and label scarcity.

Supported by Spanish National Cybersecurity Institute (INCIBE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vector machines for unsupervised anomaly detection. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 8–15 (2013)

    Google Scholar 

  2. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22

    Chapter  Google Scholar 

  3. Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12–19 (1994)

    Article  Google Scholar 

  4. Ceschin, F., Botacin, M., Gomes, H.M., Pinagé, F., Oliveira, L.S., Grégio, A.: Fast & furious: on the modelling of malware detection as an evolving data stream. Expert Syst. Appl. 212, 118590 (2023). https://doi.org/10.1016/j.eswa.2022.118590

    Article  Google Scholar 

  5. Choras, M., Wozniak, M.: Concept Drift Analysis for Improving Anomaly Detection Systems in Cybersecurity, pp. 35–42 (2017). https://doi.org/10.18690/978-961-286-114-8.3

  6. Cook, J., Ramadas, V.: When to consult precision-recall curves. Stand. Genomic Sci. 20(1), 131–148 (2020)

    Google Scholar 

  7. Cox, D.R.: The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B (Methodol.) 20(2), 215–242 (1958)

    MathSciNet  MATH  Google Scholar 

  8. Darem, A.A., Ghaleb, F.A., Al-Hashmi, A.A., Abawajy, J.H., Alanazi, S.M., Al-Rezami, A.Y.: An adaptive behavioral-based incremental batch learning malware variants detection model using concept drift detection and sequential deep learning. IEEE Access 9, 97180–97196 (2021). https://doi.org/10.1109/ACCESS.2021.3093366

    Article  Google Scholar 

  9. Galloro, N., Polino, M., Carminati, M., Continella, A., Zanero, S.: A systematical and longitudinal study of evasive behaviors in windows malware. Comput. Secur. 113, 102550 (2022). https://doi.org/10.1016/j.cose.2021.102550

    Article  Google Scholar 

  10. Gama, J., Žliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4) (2014). https://doi.org/10.1145/2523813

  11. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning for detection and classification of malware: research developments, trends and challenges. J. Netw. Comput. Appl. 153 (2020). https://doi.org/10.1016/j.jnca.2019.102526

  12. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106, 1469–1495 (2017)

    Article  MathSciNet  Google Scholar 

  13. Guerra-Manzanares, A., Bahsi, H., Nõmm, S.: KronoDroid: time-based hybrid-featured dataset for effective android malware detection and characterization. Comput. Secur. 110, 102399 (2021). https://doi.org/10.1016/j.cose.2021.102399

    Article  Google Scholar 

  14. Guerra-Manzanares, A., Luckner, M., Bahsi, H.: Android malware concept drift using system calls: detection, characterization and challenges. Expert Syst. Appl. 206, 117200 (2022). https://doi.org/10.1016/j.eswa.2022.117200

    Article  Google Scholar 

  15. Halimu, C., Kasem, A., Newaz, S.S.: Empirical comparison of area under ROC curve (AUC) and Mathew correlation coefficient (MCC) for evaluating machine learning algorithms on imbalanced datasets for binary classification. In: Proceedings of the 3rd International Conference on Machine Learning and Soft Computing, pp. 1–6 (2019)

    Google Scholar 

  16. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 97–106. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/502512.502529

  17. Jordaney, R., et al.: Transcend: detecting concept drift in malware classification models. In: 26th USENIX Security Symposium (USENIX Security 2017), Vancouver, BC, pp. 625–642. USENIX Association (2017)

    Google Scholar 

  18. Kan, Z., Pendlebury, F., Pierazzi, F., Cavallaro, L.: Investigating labelless drift adaptation for malware detection. In: Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security, AISec 2021, pp. 123–134. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3474369.3486873

  19. Kegelmeyer, W.P., Chiang, K., Ingram, J.: Streaming malware classification in the presence of concept drift and class imbalance. In: Proceedings of 12th International Conference on Machine Learning and Applications, vol. 2, pp. 48–53 (2013). https://doi.org/10.1109/ICMLA.2013.104

  20. Kermenov, R., Nabissi, G., Longhi, S., Bonci, A.: Anomaly detection and concept drift adaptation for dynamic systems: a general method with practical implementation using an industrial collaborative robot. Sensors 23(6) (2023). https://doi.org/10.3390/s23063260

  21. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of android malware detection approaches based on machine learning. IEEE Access 8, 124579–124607 (2020). https://doi.org/10.1109/ACCESS.2020.3006143

    Article  Google Scholar 

  22. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019). https://doi.org/10.1109/TKDE.2018.2876857

    Article  Google Scholar 

  23. Manapragada, C., Webb, G.I., Salehi, M.: Extremely fast decision tree. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, pp. 1953–1962. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3219819.3220005

  24. Matthews, B.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophys. Acta (BBA) - Protein Struct. 405(2), 442–451 (1975). https://doi.org/10.1016/0005-2795(75)90109-9

  25. Montiel, J., et al.: River: machine learning for streaming data in Python (2021)

    Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001). https://doi.org/10.1162/089976601750264965

    Article  MATH  Google Scholar 

  28. Shahraki, A., Abbasi, M., Taherkordi, A., Jurcut, A.D.: A comparative study on online machine learning techniques for network traffic streams analysis. Comput. Netw. 207, 108836 (2022). https://doi.org/10.1016/j.comnet.2022.108836

    Article  Google Scholar 

  29. Tan, S.C., Ting, K.M., Liu, T.F.: Fast anomaly detection for streaming data. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 2, pp. 1511–15160. AAAI Press (2011)

    Google Scholar 

  30. Yang, L., et al.: CADE: detecting and explaining concept drift samples for security applications. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 2327–2344. USENIX Association (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Escudero García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escudero García, D., DeCastro-García, N. (2023). Application of Anomaly Detection Models to Malware Detection in the Presence of Concept Drift. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics