Skip to main content

Improved Evolutionary Approach for Tuning Topic Models with Additive Regularization

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

The paper addresses a problem of tuning topic models with additive regularization by introducing a novel hybrid evolutionary approach that combines Genetic and Nelder-Mead algorithms to generate domain-specific topic models with better quality. Introducing Nelder-Mead into the Genetic Algorithm pursues the goal of enhancing exploitation capabilities of the resulting hybrid algorithm with improved local search. The conducted experimental study performed on several datasets on Russian and English languages shows noticeable increase in quality of the obtained topic models. Moreover, the experiments demonstrate that the proposed modification also improves the convergence dynamics of the tuning procedure, leading to a stable increases in quality from generation to generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bigartm.readthedocs.io/en/stable/tutorials/regularizers_descr.html.

References

  1. Shi, T., Kang, K., Choo, J., Reddy, C.K.: Short-text topic modeling via non-negative matrix factorization enriched with local word-context correlations. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018, Republic and Canton of Geneva, CHE, pp. 1105–1114. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  2. Wang, Q., Xu, J., Li, H., Craswell, N.: Regularized latent semantic indexing: a new approach to large-scale topic modeling. ACM Trans. Inf. Syst. 31, 5:1–5:44 (2013)

    Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  4. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999, pp. 50–57. Association for Computing Machinery, New York (1999)

    Google Scholar 

  5. Rezaee, M., Ferraro, F.: A discrete variational recurrent topic model without the reparametrization trick. In: Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS 2020, Red Hook, NY, USA. Curran Associates Inc. (2020)

    Google Scholar 

  6. Grootendorst, M.: BERTopic: neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794 (2022)

  7. Vorontsov, K., Frei, O., Apishev, M., Romov, P., Dudarenko, M.: BigARTM: open source library for regularized multimodal topic modeling of large collections. In: Khachay, M.Y., Konstantinova, N., Panchenko, A., Ignatov, D.I., Labunets, V.G. (eds.) AIST 2015. CCIS, vol. 542, pp. 370–381. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26123-2_36

    Chapter  Google Scholar 

  8. Rieger, J., Jentsch, C., Rahnenführer, J.: RollingLDA: an update algorithm of Latent Dirichlet Allocation to construct consistent time series from textual data. In: Findings of the Association for Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic, November 2021, pp. 2337–2347. Association for Computational Linguistics (2021)

    Google Scholar 

  9. Bulatov, V., et al.: TopicNet: making additive regularisation for topic modelling accessible. In: LREC (2020)

    Google Scholar 

  10. Khodorchenko, M., Teryoshkin, S., Sokhin, T., Butakov, N.: Optimization of learning strategies for ARTM-based topic models. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds.) HAIS 2020. LNCS (LNAI), vol. 12344, pp. 284–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61705-9_24

    Chapter  Google Scholar 

  11. Khodorchenko, M., Butakov, N., Sokhin, T., Teryoshkin, S.: Surrogate-based optimization of learning strategies for additively regularized topic models. Log. J. IGPL 31(2), 287–299 (2023)

    Article  Google Scholar 

  12. Pavlenko, A., Chivilikhin, D., Semenov, A.: Asynchronous evolutionary algorithm for finding backdoors in Boolean satisfiability. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2022)

    Google Scholar 

  13. Butakov, N., Nasonov, D.: Co-evolutional genetic algorithm for workflow scheduling in heterogeneous distributed environment. In: 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–5. IEEE (2014)

    Google Scholar 

  14. Singer, S., Nelder, J.: Nelder-Mead algorithm. Scholarpedia 4(7), 2928 (2009)

    Article  Google Scholar 

  15. Takenaga, S., Ozaki, Y., Onishi, M.: Practical initialization of the Nelder-Mead method for computationally expensive optimization problems. Optim. Lett. 17(2), 283–297 (2023). https://doi.org/10.1007/s11590-022-01953-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Vorontsov, K., Frei, O., Apishev, M., Romov, P., Suvorova, M., Yanina, A.: Non-Bayesian additive regularization for multimodal topic modeling of large collections. In: Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, pp. 29–37 (2015)

    Google Scholar 

  17. Řehřek, R., Sojka, P.: Software framework for topic modelling with large corpora (2010)

    Google Scholar 

  18. Terragni, S., Fersini, E., Galuzzi, B.G., Tropeano, P., Candelieri, A.: OCTIS: comparing and optimizing topic models is simple! In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pp. 263–270 (2021)

    Google Scholar 

  19. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80, 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  21. Pelikan, M., Goldberg, D.E., Cantú-Paz, E., et al.: BOA: the Bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-1999, vol. 1, pp. 525–532. Citeseer (1999)

    Google Scholar 

  22. Khodorchenko, M., Butakov, N.: Developing an approach for lifestyle identification based on explicit and implicit features from social media. Procedia Comput. Sci. 136, 236–245 (2018). 7th International Young Scientists Conference on Computational Science, YSC 2018, Heraklion, Greece, 02–06 July 2018

    Google Scholar 

  23. Khodorchenko, M., Butakov, N., Nasonov, D.: Towards better evaluation of topic model quality. In: 2022 32nd Conference of Open Innovations Association (FRUCT), pp. 128–134. IEEE (2022)

    Google Scholar 

  24. Lund, J., et al.: Automatic evaluation of local topic quality. arXiv preprint arXiv:1905.13126 (2019)

  25. Doogan, C., Buntine, W.: Topic model or topic twaddle? Re-evaluating semantic interpretability measures. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 3824–3848. Association for Computational Linguistics (2021)

    Google Scholar 

  26. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, California, pp. 100–108. ACL (2010)

    Google Scholar 

  27. Lang, K.: NewsWeeder: learning to filter netnews. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 331–339 (1995)

    Google Scholar 

  28. Yutkin, D.: Corpus of Russian news articles collected from lenta.ru (2018)

    Google Scholar 

  29. McAuley, J.J., Leskovec, J.: From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 897–908. Association for Computing Machinery, New York (2013)

    Google Scholar 

  30. Datafiniti’s Business Database: Datafiniti’s hotel reviews

    Google Scholar 

  31. Nevezhin, E., Butakov, N., Khodorchenko, M., Petrov, M., Nasonov, D.A.: Topic-driven ensemble for online advertising generation. In: COLING (2020)

    Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Russian Science Foundation, Agreement 17-71-30029, with co-financing of Bank Saint Petersburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Khodorchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khodorchenko, M., Butakov, N., Nasonov, D. (2023). Improved Evolutionary Approach for Tuning Topic Models with Additive Regularization. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics