Skip to main content

Feature Selection Based on a Decision Tree Genetic Algorithm

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

The feature selection problem has become a key undertaking within machine learning. For classification problems, it is known to reduce the computational complexity of parameter estimation, but also it adds an important contribution to the explainability aspects of the results. In this paper, a genetic algorithm for feature selection is proposed. The importance, as well as the effectiveness of features selected by each individual, is evaluated by using decision trees. The feature importance indicated by the decision tree is used during selection and recombination. The tree inducted by the best individual in the population is used for classification. Numerical experiments illustrate the behavior of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    version 1.1.1.

References

  1. Bala, J., Huang, J., Vafaie, H., Dejong, K., Wechsler, H.: Hybrid learning using genetic algorithms and decision trees for pattern classification. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 1, pp. 719–724. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  2. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018). https://doi.org/10.1016/j.neucom.2017.11.077, https://www.sciencedirect.com/science/article/pii/S0925231218302911

  3. Ceniceros, J.F., Sanz-Garcia, A., Pernia-Espinoza, A., Martinez-de-Pison, F.J.: PSO-PARSIMONY: a new methodology for searching for accurate and parsimonious models with particle swarm optimization. Application for predicting the force-displacement curve in T-stub steel connections. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 15–26. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86271-8_2

    Chapter  Google Scholar 

  4. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  5. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010. rOC Analysis in Pattern Recognition

    Article  MathSciNet  Google Scholar 

  6. Hansen, L., Lee, E.A., Hestir, K., Williams, L.T., Farrelly, D.: Controlling feature selection in random forests of decision trees using a genetic algorithm: classification of class I MHC peptides. Combin. Chem. High Throughput Screen. 12(5), 514–519 (2009). https://doi.org/10.2174/138620709788488984

    Article  Google Scholar 

  7. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997). https://doi.org/10.1016/S0004-3702(97)00043-X, https://www.sciencedirect.com/science/article/pii/S000437029700043X

  8. Lazar, C., et al.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(4), 1106–1119 (2012). https://doi.org/10.1109/TCBB.2012.33

    Article  Google Scholar 

  9. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Rahmadani, S., Dongoran, A., Zarlis, M., Zakarias: Comparison of naive bayes and decision tree on feature selection using genetic algorithm for classification problem. J. Phys.: Conf. Ser. 978(1), 012087 (2018). https://doi.org/10.1088/1742-6596/978/1/012087, https://dx.doi.org/10.1088/1742-6596/978/1/012087

  11. Rosset, S.: Model selection via the AUC. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 89. Association for Computing Machinery, New York (2004). https://doi.org/10.1145/1015330.1015400

  12. Sanz-Garcia, A., Fernandez-Ceniceros, J., Antonanzas-Torres, F., Pernia-Espinoza, A., de Pison, F.M.: Ga-parsimony: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace. Appl. Soft Comput. 35, 13–28 (2015). https://doi.org/10.1016/j.asoc.2015.06.012, https://www.sciencedirect.com/science/article/pii/S1568494615003610

  13. Stein, G., Chen, B., Wu, A.S., Hua, K.A.: Decision tree classifier for network intrusion detection with GA-based feature selection. In: Proceedings of the 43rd Annual Southeast Regional Conference, vol. 2, pp. 136–141. ACM-SE 43, Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1167253.1167288

  14. Theodoridis, P.K., Gkikas, D.C.: Optimal feature selection for decision trees induction using a genetic algorithm wrapper - a model approach. In: Kavoura, A., Kefallonitis, E., Theodoridis, P. (eds.) Strategic Innovative Marketing and Tourism. SPBE, pp. 583–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36126-6_65

    Chapter  Google Scholar 

  15. Utgoff, P.E.: Incremental induction of decision trees. Mach. Learn. 4(2), 161–186 (1989). https://doi.org/10.1023/A:1022699900025

    Article  Google Scholar 

  16. Vafaie, H., De Jong, K.: Genetic algorithms as a tool for feature selection in machine learning. In: Proceedings Fourth International Conference on Tools with Artificial Intelligence TAI 1992, pp. 200–203 (1992). https://doi.org/10.1109/TAI.1992.246402

  17. Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: Multi-objective evolutionary algorithms for filter based feature selection in classification. Int. J. Artif. Intelli. Tools 22(04), 1350024 (2013). https://doi.org/10.1142/S0218213013500243

  18. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016). https://doi.org/10.1109/TEVC.2015.2504420

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-1374, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai-Alexandru Suciu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suciu, MA., Lung, R.I. (2023). Feature Selection Based on a Decision Tree Genetic Algorithm. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics