Skip to main content

Model Performance Prediction: A Meta-Learning Approach for Concept Drift Detection

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

Data stream applications in highly dynamic environments often face concept drift problems, a phenomenon in which the statistical properties of the variables change over time, which can degrade the performance of Machine Learning models. This work presents a new model monitoring tool through the use of Meta Learning. The algorithm was conceived for data streams with concept drift and large target arrival delay. Additionally, a new set of Meta Features is proposed based on the use of unsupervised concept drift metrics. Unlike related Meta Learning approaches, a regressor was used at the meta level to predict the predictive performance of the base model. These predictions can be used to generate concept drift alerts before the arriving objects are labelled. Experimental results show that the proposed approach obtains, on average, a classification error reduction of 12.8%, when compared to the traditional Meta Learning approaches, and 38%, when compared to the baseline, the last known performance, in predicting the performance of the base model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashir, S.A., Petrovski, A., Doolan, D.: A framework for unsupervised change detection in activity recognition. Int. J. Pervasive Comput. Commun. 13(2), 157–175 (2017)

    Article  Google Scholar 

  2. Brazdil, P.: Metalearning: Applications to Automated Machine Learning and Data Mining. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-67024-5. Cognitive Technologies

  3. Brazdil, P., Giraud-Carrier, C.: Metalearning and algorithm selection: progress, state of the art and introduction to the 2018 special issue. Mach. Learn. 107, 12 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960). April

    Article  Google Scholar 

  5. Jáder M. C. de Sá, Andre, L.D., Rossi, Gustavo E. A. P. A. Batista, and Luís P. F. Garcia. Algorithm recommendation for data streams. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6073–6080, 2021

    Google Scholar 

  6. Gama, J.: A survey on learning from data streams: current and future trends. Prog. Artif. Intell. 1(1), 45–55 (2012). January

    Article  Google Scholar 

  7. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  8. Gemaque, R.N., Costa, A.F.J., Giusti, R., Dos Santos, E.M.: An overview of unsupervised drift detection methods. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 10, e1381 (2020)

    Google Scholar 

  9. Gemaque, R.N., Costa, A.F.J., Giusti, R., Dos Santos, E.M.: An overview of unsupervised drift detection methods. WIREs Data Min. Knowl. Discov. 10(6), e1381 (2020)

    Google Scholar 

  10. Janardan and Shikha Mehta: Concept drift in streaming data classification: algorithms, platforms and issues. Procedia Comput. Sci. 122, 804–811 (2017)

    Article  Google Scholar 

  11. Kadam, S.V.: A Survey on Classification of Concept Drift with Stream Data. working paper or preprint (2019)

    Google Scholar 

  12. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 3149–3157, Red Hook, NY, USA, Curran Associates Inc (2017)

    Google Scholar 

  13. Maletzke, A.G., dos Reis, D.M., Batista, G.E.: Combining instance selection and self-training to improve data stream quantification. J. Braz. Comput. Soc. 24(1), 1–17 (2018)

    Article  Google Scholar 

  14. Mouss, H., Mouss, D., Mouss, N., Sefouhi, L.: Test of page-hinckley, an approach for fault detection in an agro-alimentary production system, vol. 2, no. 08, pp. 815–818 (2004)

    Google Scholar 

  15. Nguyen, H.-L., Woon, Y.-K., Ng, W.-K.: A survey on data stream clustering and classification. Knowl. Inf. Syst. 45(3), 535–569 (2014). December

    Article  Google Scholar 

  16. du Pisanie, J., Allison, J.S., Visagie, J.: A proposed simulation technique for population stability testing in credit risk scorecards. Mathematics 11(2), 492 (2022)

    Article  Google Scholar 

  17. Rice, J.R.: The algorithm selection problem**this work was partially supported by the national science foundation through grant gp-32940x. this chapter was presented as the george e. forsythe memorial lecture at the computer science conference, february 19, 1975, washington, d. c. volume 15 of Advances in Computers, pp. 65–118. Elsevier (1976)

    Google Scholar 

  18. Rivolli, A., Garcia, L.P., Soares, C., Vanschoren, J., de Carvalho, A.C.: Meta-features for meta-learning. Knowl. Based Syst. 240, 108101 (2022)

    Article  Google Scholar 

  19. Rossi, A.L.D., de Leon Ferreira, A.C.P., Soares, C., De Souza, B.F.: MetaStream: a meta-learning based method for periodic algorithm selection in time-changing data. Neurocomputing, 127, 52–64 (2014)

    Google Scholar 

  20. Rossi, A.L.D., De Souza, B.F., Soares, C., de Leon Ferreira de Carvalho, A., Ponce, C.: A guidance of data stream characterization for meta-learning. Intell. Data Anal. 21(4), 1015–1035 2017

    Google Scholar 

  21. Rossi, A.L.D., Soares, C., de Souza, B.F., de Leon Ferreira, A.C.P.: Algorithm selection for time-changing data. Inf. Sci. 565, 262–277 (2021)

    Article  MathSciNet  Google Scholar 

  22. Tegjyot Singh Sethi and Mehmed Kantardzic: Don’t pay for validation: detecting drifts from unlabeled data using margin density. Procedia Comput. Sci. 53, 103–112 (2015)

    Article  Google Scholar 

  23. Siddiqi, N.: Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring. Wiley, Hopboken (2005)

    Google Scholar 

  24. Maggio, D.P.S.: A Primer on Data Drift & Drift Detection Techniques. Dataiku (2020)

    Google Scholar 

  25. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2009)

    Article  Google Scholar 

  26. Souza, V.M.A., Reis, D.M., Maletzke, A.G., Batista, G.E.A.P.A.: Challenges in benchmarking stream learning algorithms with real-world data. Data Min. Knowl. Disc. 34, 1805–1858 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsymbal, A.: The problem of concept drift: definitions and related work (2004)

    Google Scholar 

  28. Vanschoren, J., Soares, C., Brazdil, P., Kotthoff, L.: Meta-Learning and Algorithm Selection (2014)

    Google Scholar 

  29. Verma, D., Nashine, R.: Data mining: next generation challenges and futureDirections. Int. J. Model. Optim. 2(5), 603 (2012)

    Article  Google Scholar 

  30. Vilalta, R., Giraud-Carrier, C., Brazdil, P.: Meta-learning - concepts and techniques. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 717–731. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_36

    Chapter  MATH  Google Scholar 

  31. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  32. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society. SBD, vol. 16, pp. 91–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26989-4_4

    Chapter  Google Scholar 

Download references

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda A. Melo , André C. P. L. F. de Carvalho , Ana C. Lorena or Luís P. F. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melo, F.A., de Carvalho, A.C.P.L.F., Lorena, A.C., Garcia, L.P.F. (2023). Model Performance Prediction: A Meta-Learning Approach for Concept Drift Detection. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics