Skip to main content

Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

One of the techniques for the analysis of travel patterns on a public transport network is the clustering of the users movements, in order to identify movement patterns. This paper analyses and compares two different methodologies for public transport trajectory clustering: feature clustering and geospatial trajectory clustering. The results of clustering trip features, such as origin, destination, or distance, are compared against the clustering of travelled trajectories by their geospatial characteristics. Algorithms based on density and hierarchical clustering are compared for both methodologies. In geospatial clustering, different metrics to measure distances between trajectories are included in the comparison. Results are evaluated by analysing their quality through the silhouette coefficient and graphical representations of the clusters on the map. The results show that geospatial trajectory clustering offers better quality than feature trajectory clustering. Also, in the case of long and complete trajectories, density clustering using edit distance with real penalty distance outperforms other combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrián, H.C., Alfonso, S.P., Zanón, B.B., Raffaetà, A., Zanatta, F.: Discovery of tourists’ movement patterns in Venice from public transport data. In: SAC 2022: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pp. 564–568. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3477314.3507355

  2. Ansari, M.Y., Ahmad, A., Khan, S.S., Bhushan, G., Mainuddin: Spatiotemporal clustering: a review. Artif. Intell. Rev. 53(4), 2381–2423 (2020). https://doi.org/10.1007/s10462-019-09736-1

  3. Beirão, G., Sarsfield Cabral, J.A.: Understanding attitudes towards public transport and private car: a qualitative study. Transp. Policy 14(6), 478–489 (2007). https://doi.org/10.1016/j.tranpol.2007.04.009

    Article  Google Scholar 

  4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: AAAIWS 1994: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 359–370. AAAI Press (1994). https://doi.org/10.5555/3000850.3000887

  5. Besse, P., Guillouet, B., Loubes, J.M., François, R.: Review and perspective for distance based trajectory clustering. ArXiv e-prints (2015). https://doi.org/10.48550/arXiv.1508.04904

  6. Bian, J., Tian, D., Tang, Y., Tao, D.: A survey on trajectory clustering analysis. ArXiv e-prints (2018). https://doi.org/10.48550/arXiv.1802.06971

  7. Chen, L., Ng, R.: On the marriage of LP-norms and edit distance. In: VLDB 2004: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 792–803. VLDB Endowment (2004). https://doi.org/10.5555/1316689.1316758

  8. Gutiérrez, A., Domènech, A., Zaragozí, B., Miravet, D.: Profiling tourists’ use of public transport through smart travel card data. J. Transp. Geogr. 88, 102820 (2020). https://doi.org/10.1016/j.jtrangeo.2020.102820

    Article  Google Scholar 

  9. He, L., Trépanier, M., Agard, B.: Space–time classification of public transit smart card users’ activity locations from smart card data. Public Transport 13(3), 579–595 (2021). https://doi.org/10.1007/s12469-021-00274-0

    Article  Google Scholar 

  10. Liu, Y., Cheng, T.: Understanding public transit patterns with open geodemographics to facilitate public transport planning. Transportmetrica A: Transp. Sci. 16(1), 76–103 (2020). https://doi.org/10.1080/23249935.2018.1493549

    Article  MathSciNet  Google Scholar 

  11. McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017). https://doi.org/10.21105/joss.00205

  12. de Montréal, V.: Déplacements MTL Trajet - Site web des données ouvertes de la Ville de Montréal (2023). https://donnees.montreal.ca/dataset/mtl-trajet

  13. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. ArXiv e-prints (2011). https://doi.org/10.48550/arXiv.1109.2378

  14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  15. Tsafarakis, S., Gkorezis, P., Nalmpantis, D., Genitsaris, E., Andronikidis, A., Altsitsiadis, E.: Investigating the preferences of individuals on public transport innovations using the maximum difference scaling method. Eur. Transp. Res. Rev. 11(1), 1–12 (2019). https://doi.org/10.1186/s12544-018-0340-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Cogollos Adrian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adrian, H.C., Zanon, B.B., Alfonso, S.P., Dolezel, P. (2023). Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics