Skip to main content

Generalizing an Improved GrowCut Algorithm for Mammography Lesion Detection

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

In the past five years, 7.8 million women were diagnosed with breast cancer. Breast cancer is curable if it is discovered in early stages. Therefore, mammography screening is essential. But, since interpretation can prove difficult, various automated interpretation systems have been proposed so far. A crucial step of the interpretation process is segmentation: identifying the region of interest. In this paper we aim to evaluate an improved version of the GrowCut algorithm - which reduces both the human intervention and the computational time, while preserving a high level of accuracy, and analyzes three possibilities of avoiding the need for initial background seeds: (1) automatically generating seeds inside the breast, (2) using the mammogram’s black pixels and (3) not using background seeds - on a different, much larger dataset than the one initially used for experiments, in order to analyze the impact of a dataset’s particularities and the influence of different seed types on the segmentation results, and to validate the initial conclusions. However, the experimental results presented in this paper do not only validate the premises, but also demonstrate that the improved version is a generic algorithm which can be used on any dataset with different types of background seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anitha, J., Peter, J.D.: Mammogram segmentation using maximal cell strength updation in cellular automata. Med. Biol. Eng. Comput. 53(8), 737–749 (2015)

    Article  Google Scholar 

  2. Centers for Disease Control and Prevention: What is a mammogram? (2022). Accessed 15 May 2023

    Google Scholar 

  3. Cordeiro, F.R., Santos, W.P.D., Silva-Filho, A.G.: Analysis of supervised and semi-supervised growcut applied to segmentation of masses in mammography images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 5(4), 297–315 (2017)

    Google Scholar 

  4. Desai, S.D., Megha, G., Avinash, B., Sudhanva, K., Rasiya, S., Linganagouda, K.: Detection of microcalcification in digital mammograms by improved-MMGW segmentation algorithm. In: 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies, pp. 213–218. IEEE (2013)

    Google Scholar 

  5. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  6. Duque, A.E.R., Gómez, D.C.A., Nieto, J.K.A.: Breast lesions detection in digital mammography: an automated pre-diagnosis. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, pp. 1–5. IEEE (2014)

    Google Scholar 

  7. Ait lbachir, I., Es-salhi, R., Daoudi, I., Tallal, S., Medromi, H.: A survey on segmentation techniques of mammogram images. In: El-Azouzi, R., Menasché, D.S., Sabir, E., Pellegrini, F.D., Benjillali, M. (eds.) Advances in Ubiquitous Networking 2. LNEE, vol. 397, pp. 545–556. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1627-1_43

    Chapter  Google Scholar 

  8. Ge, F., Wang, S., Liu, T.: New benchmark for image segmentation evaluation. J. Electron. Imaging 16(3), 033011 (2007)

    Article  Google Scholar 

  9. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The digital database for screening mammography, iwdm-2000 (2001)

    Google Scholar 

  10. International Agency for Research on Cancer: Global cancer observatory: Cancer today (2020). Accessed 20 Apr 2022

    Google Scholar 

  11. Lekamlage, C.D., Afzal, F., Westerberg, E., Cheddad, A.: Mini-DDSM: mammography-based automatic age estimation. In: 2020 3rd International Conference on Digital Medicine and Image Processing, pp. 1–6 (2020)

    Google Scholar 

  12. Moroz-Dubenco, C., Dioşan, L., Andreica, A.: Mammography lesion detection using an improved growcut algorithm. Procedia Comput. Sci. 192, 308–317 (2021)

    Article  Google Scholar 

  13. Raman, V., Sumari, P., Then, H., Al-Omari, S.A.K.: Review on mammogram mass detection by machinelearning techniques. Int. J. Comput. Electr. Eng. 3(6), 873 (2011)

    Article  Google Scholar 

  14. Ramani, R., Vanitha, N.S., Valarmathy, S.: The pre-processing techniques for breast cancer detection in mammography images. Int. J. Image, Graph. Signal Process. 5(5), 47 (2013)

    Article  Google Scholar 

  15. SUCKLING J, P.: The mammographic image analysis society digital mammogram database. Digital MAMMO, pp. 375–386 (1994)

    Google Scholar 

  16. Taha, A.A., Hanbury, A.: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  17. Vezhnevets, V., Konouchine, V.: GrowCut: interactive multi-label ND image segmentation by cellular automata. In: Proceedings of Graphicon, vol. 1, pp. 150–156. Citeseer (2005)

    Google Scholar 

  18. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Understanding 110(2), 260–280 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Moroz-Dubenco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moroz-Dubenco, C., Diosan, L., Andreica, A. (2023). Generalizing an Improved GrowCut Algorithm for Mammography Lesion Detection. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics