Skip to main content

GEMM-Like Convolution for Deep Learning Inference on the Xilinx Versal

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2023)

Abstract

We revisit a blocked formulation of the direct convolution algorithm that mimics modern realizations of the general matrix multiplication (gemm), demonstrating that the same approach can be adapted to deliver high performance for deep learning inference tasks on the AI Engine (AIE) tile embedded in Xilinx Versal platforms. Our experimental results on a Xilinx Versal VCK190 shows an arithmetic throughput close to 70% of the theoretical peak of the AIE tile for 8-bit integer operands and the convolutional layers arising in ResNet-50 v.15+ImageNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, S., et al.: Xilinx first 7 nm device: versal AI core (VC1902). In: 2019 IEEE Hot Chips 31 Symposium (HCS), pp. 1–28 (2019)

    Google Scholar 

  2. Barrachina, S., et al.: Efficient and portable GEMM-based convolution operators for deep neural network training on multicore processors. J. Parallel Distrib. Comput. 167, 240–254 (2022)

    Article  Google Scholar 

  3. Barrachina, S., et al.: Reformulating the direct convolution for high-performance deep learning inference on ARM processors. J. Syst. Arch. 135, 102806 (2023)

    Article  Google Scholar 

  4. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: an in-depth concurrency analysis. ACM Comput. Surv. 52(4), 65:1–65:43 (2019)

    Google Scholar 

  5. Castelló, A., Quintana-Ortí, E.S., Igual, F.D.: Anatomy of the BLIS family of algorithms for matrix multiplication. In: 30th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 92–99 (2022)

    Google Scholar 

  6. Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural networks for document processing. In: International Workshop on Frontiers in Handwriting Recognition (2006). https://hal.inria.fr/inria-00112631

  7. Dolz, M.F., et al.: Efficient and portable Winograd convolutions for multi-core processors. J. Supercomput. (2023, to appear)

    Google Scholar 

  8. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goto, K., van de Geijn, R.A.: Anatomy of a high-performance matrix multiplication. ACM Trans. Math. Softw. 34(3), 12:1–12:25 (2008)

    Google Scholar 

  10. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013–4021 (2016)

    Google Scholar 

  11. Low, T.M., et al.: Analytical modeling is enough for high-performance BLIS. ACM Trans. Math. Softw. 43(2), 12:1–12:18 (2016)

    Google Scholar 

  12. Najafabadi, M.M., et al.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1 (2015)

    Article  Google Scholar 

  13. Sze, V., et al.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  14. Van Zee, F.G., van de Geijn, R.A.: BLIS: a framework for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw. 41(3), 14:1–14:33 (2015)

    Google Scholar 

  15. Xilinx: AI Engine tools and flows user guide (UG1079) (2022). https://docs.xilinx.com/r/en-US/ug1079-ai-engine-kernel-coding/Tools

  16. Zhang, J., Franchetti, F., Low, T.M.: High performance zero-memory overhead direct convolutions. In: Proceedings of the 35th International Conference on Machine Learning, vol. 80 (2018)

    Google Scholar 

  17. Zhao, Y., et al.: A faster algorithm for reducing the computational complexity of convolutional neural networks. Algorithms 11(10), 159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union’s Horizon 2020 research and innovation programme, and Spain, Germany, France, Italy, Poland, Switzerland, Norway.

The authors acknowledge funding from European Union’s Horizon2020 Research and Innovation programme under the Marie Skłodowska Curie Grant Agreement No. 956090 (APROPOS).

This work was also supported by the research project PID2020-113656RB-C22 of MCIN/AEI/10.13039/501100011033. H. Martínez is a postdoc fellow supported by the Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, J., Martínez, H., Flich, J., Quintana-Ortí, E.S. (2023). GEMM-Like Convolution for Deep Learning Inference on the Xilinx Versal. In: Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds) High Performance Computing. ISC High Performance 2023. Lecture Notes in Computer Science, vol 13999. Springer, Cham. https://doi.org/10.1007/978-3-031-40843-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40843-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40842-7

  • Online ISBN: 978-3-031-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics