Skip to main content

Towards Smarter Schedulers: Molding Jobs into the Right Shape via Monitoring and Modeling

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13999))

Included in the following conference series:

  • 1028 Accesses

Abstract

High-performance computing is not only a race towards the fastest supercomputers but also the science of using such massive machines productively to acquire valuable results – outlining the importance of performance modelling and optimization. However, it appears that more than punctual optimization is required for current architectures, with users having to choose between multiple intertwined parallelism possibilities, dedicated accelerators, and I/O solutions. Witnessing this challenging context, our paper establishes an automatic feedback loop between how applications run and how they are launched, with a specific focus on I/O. One goal is to optimize how applications are launched through moldability (launch-time malleability). As a first step in this direction, we propose a new, always-on measurement infrastructure based on state-of-the-art cloud technologies adapted for HPC. In this paper, we present the measurement infrastructure and associated design choices. Moreover, we leverage an existing performance modelling tool to generate I/O performance models. We outline sample modelling capabilities, as derived from our measurement chain showing the critical importance of the measurement in future HPC systems, especially concerning resource configurations. Thanks to this precise performance model infrastructure, we can improve moldability and malleability on HPC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, D.H., Garlick, J., Grondona, M., Lipari, D., Springmeyer, B., Schulz, M.: Flux: a next-generation resource management framework for large HPC centers. In: 2014 43rd International Conference on Parallel Processing Workshops, pp. 9–17. IEEE (2014)

    Google Scholar 

  2. Arima, E., Comprés, A.I., Schulz, M.: On the convergence of malleability and the HPC PowerStack: exploiting dynamism in over-provisioned and power-constrained HPC systems. In: Anzt, H., Bienz, A., Luszczek, P., Baboulin, M. (eds.) ISC High Performance 2022. LNCS, vol. 13387, pp. 206–217. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23220-6_14

    Chapter  Google Scholar 

  3. Balaprakash, P., et al.: Autotuning in high-performance computing applications. Proc. IEEE 106(11), 2068–2083 (2018)

    Article  Google Scholar 

  4. Besnard, J.B., Malony, A.D., Shende, S., Pérache, M., Carribault, P., Jaeger, J.: Towards a better expressiveness of the speedup metric in MPI context. In: 2017 46th International Conference on Parallel Processing Workshops (ICPPW), pp. 251–260. IEEE (2017)

    Google Scholar 

  5. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance modeling to find scalability bugs in complex codes. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, p. 45 (2013). tex.organization: ACM Citation Key: CA13

    Google Scholar 

  6. Cantalupo, C., et al.: A strawman for an HPC PowerStack. Technical report, Intel Corporation, United States; Lawrence Livermore National Lab. (LLNL) (2018)

    Google Scholar 

  7. Carns, P.H., et al.: Understanding and improving computational science storage access through continuous characterization. ACM Trans. Storage 7(3), 8:1–8:26 (2011). https://doi.org/10.1145/2027066.2027068

  8. Carretero, J., Jeannot, E., Pallez, G., Singh, D.E., Vidal, N.: Mapping and scheduling HPC applications for optimizing I/O. In: Proceedings of the 34th ACM International Conference on Supercomputing, pp. 1–12 (2020)

    Google Scholar 

  9. Cascajo, A., Singh, D.E., Carretero, J.: LIMITLESS-light-weight monitoring tool for large scale systems. Microprocess. Microsyst. 93, 104586 (2022)

    Article  Google Scholar 

  10. Cera, M.C., Georgiou, Y., Richard, O., Maillard, N., Navaux, P.O.A.: Supporting malleability in parallel architectures with dynamic CPUSETs mapping and dynamic MPI. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010. LNCS, vol. 5935, pp. 242–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11322-2_26

    Chapter  Google Scholar 

  11. D’Amico, M., Jokanovic, A., Corbalan, J.: Holistic slowdown driven scheduling and resource management for malleable jobs. In: ACM International Conference Proceeding Series (2019). https://doi.org/10.1145/3337821.3337909

  12. Denoyelle, N., Goglin, B., Ilic, A., Jeannot, E., Sousa, L.: Modeling large compute nodes with heterogeneous memories with cache-aware roofline model. In: Jarvis, S., Wright, S., Hammond, S. (eds.) PMBS 2017. LNCS, vol. 10724, pp. 91–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72971-8_5

    Chapter  Google Scholar 

  13. Dorier, M., Dreher, M., Peterka, T., Wozniak, J.M., Antoniu, G., Raffin, B.: Lessons learned from building in situ coupling frameworks. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 19–24 (2015)

    Google Scholar 

  14. Duro, F.R., Blas, J.G., Isaila, F., Carretero, J., Wozniak, J., Ross, R.: Exploiting data locality in Swift/T workflows using Hercules. In: Proceedings of NESUS Workshop (2014)

    Google Scholar 

  15. Goglin, B., Moreaud, S.: Dodging non-uniform I/O access in hierarchical collective operations for multicore clusters. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 788–794. IEEE (2011)

    Google Scholar 

  16. Gupta, R., Laguna, I., Ahn, D., Gamblin, T., Bagchi, S., Lin, F.: STATuner: efficient tuning of CUDA kernels parameters. In: Supercomputing Conference (SC 2015), Poster (2015)

    Google Scholar 

  17. Hoefler, T., Gropp, W., Kramer, W., Snir, M.: Performance modeling for systematic performance tuning. In: State of the Practice Reports, SC 2011, pp. 1–12. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2063348.2063356

  18. Hu, W., Liu, G., Li, Q., Jiang, Y., Cai, G.: Storage wall for exascale supercomputing. Front. Inf. Technol. Electron. Eng. 17(11), 1154–1175 (2016). https://doi.org/10.1631/FITEE.1601336

    Article  Google Scholar 

  19. Huber, D., Streubel, M., Comprés, I., Schulz, M., Schreiber, M., Pritchard, H.: Towards dynamic resource management with MPI sessions and PMIx. In: Proceedings of the 29th European MPI Users’ Group Meeting, pp. 57–67 (2022)

    Google Scholar 

  20. Klein, C., Pérez, C.: An RMS for non-predictably evolving applications. In: Proceedings - IEEE International Conference on Cluster Computing, ICCC, pp. 326–334 (2011). https://doi.org/10.1109/CLUSTER.2011.56

  21. Kumar, R., Vadhiyar, S.: Identifying quick starters: towards an integrated framework for efficient predictions of queue waiting times of batch parallel jobs. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp. 196–215. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35867-8_11

    Chapter  Google Scholar 

  22. Martí Fraiz, J.: dataClay: next generation object storage (2017)

    Google Scholar 

  23. Miranda, A., Jackson, A., Tocci, T., Panourgias, I., Nou, R.: NORNS: extending Slurm to support data-driven workflows through asynchronous data staging. In: 2019 IEEE International Conference on Cluster Computing (CLUSTER), USA, pp. 1–12. IEEE (2019). https://doi.org/10.1109/CLUSTER.2019.8891014

  24. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst. 12(6), 529–543 (2001). https://doi.org/10.1109/71.932708

    Article  Google Scholar 

  25. Netti, A., et al.: DCDB wintermute: enabling online and holistic operational data analytics on HPC systems. In: Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, pp. 101–112 (2020)

    Google Scholar 

  26. Nikitenko, D.A., et al.: Influence of noisy environments on behavior of HPC applications. Lobachevskii J. Math. 42(7), 1560–1570 (2021). https://doi.org/10.1134/S1995080221070192

    Article  MATH  Google Scholar 

  27. Patki, T., Thiagarajan, J.J., Ayala, A., Islam, T.Z.: Performance optimality or reproducibility: that is the question. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver Colorado, pp. 1–30. ACM (2019). https://doi.org/10.1145/3295500.3356217

  28. Petrini, F., Kerbyson, D., Pakin, S.: The case of the missing supercomputer performance: achieving optimal performance on the 8,192 processors of ASCI Q. In: SC 2003: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, p. 55 (2003). https://doi.org/10.1145/1048935.1050204

  29. Prabhakaran, S., Neumann, M., Rinke, S., Wolf, F., Gupta, A., Kale, L.V.: A batch system with efficient adaptive scheduling for malleable and evolving applications. In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp. 429–438. IEEE (2015)

    Google Scholar 

  30. Ritter, M., Calotoiu, A., Rinke, S., Reimann, T., Hoefler, T., Wolf, F.: Learning cost-effective sampling strategies for empirical performance modeling. In: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 884–895 (2020). https://doi.org/10.1109/IPDPS47924.2020.00095

  31. Ritter, M., et al.: Noise-resilient empirical performance modeling with deep neural networks. In: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 23–34 (2021). https://doi.org/10.1109/IPDPS49936.2021.00012

  32. Schulz, M., Kranzlmüller, D., Schulz, L.B., Trinitis, C., Weidendorfer, J.: On the inevitability of integrated HPC systems and how they will change HPC system operations. In: Proceedings of the 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies, pp. 1–6 (2021)

    Google Scholar 

  33. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47954-6_11

    Chapter  Google Scholar 

  34. Sudarsan, R., Ribbens, C.J.: ReSHAPE: a framework for dynamic resizing and scheduling of homogeneous applications in a parallel environment. In: Proceedings of the International Conference on Parallel Processing (2007). https://doi.org/10.1109/ICPP.2007.73

  35. Vef, M.A., et al.: GekkoFS-a temporary distributed file system for HPC applications. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 319–324. IEEE (2018)

    Google Scholar 

  36. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009). https://doi.org/10.1145/1498765.1498785

    Article  Google Scholar 

  37. Wood, C., et al.: Artemis: automatic runtime tuning of parallel execution parameters using machine learning. In: Chamberlain, B.L., Varbanescu, A.-L., Ltaief, H., Luszczek, P. (eds.) ISC High Performance 2021. LNCS, vol. 12728, pp. 453–472. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78713-4_24

    Chapter  Google Scholar 

  38. Wu, X., et al.: Toward an end-to-end auto-tuning framework in HPC PowerStack. In: 2020 IEEE International Conference on Cluster Computing (CLUSTER), pp. 473–483. IEEE (2020)

    Google Scholar 

Download references

Acknowledgment

This work has been partially funded by the European Union’s Horizon 2020 under the ADMIRE project, grant Agreement number: 956748-ADMIRE-H2020-JTI-EuroHPC-2019-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Besnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Besnard, JB. et al. (2023). Towards Smarter Schedulers: Molding Jobs into the Right Shape via Monitoring and Modeling. In: Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds) High Performance Computing. ISC High Performance 2023. Lecture Notes in Computer Science, vol 13999. Springer, Cham. https://doi.org/10.1007/978-3-031-40843-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40843-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40842-7

  • Online ISBN: 978-3-031-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics