Skip to main content

Efficient Quantum Solution for the Constrained Tactical Capacity Problem for Distributed Electricity Generation

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1876))

Included in the following conference series:

  • 217 Accesses

Abstract

With the transition to sustainable energy sources and devices, the demand for and supply of energy increases ever more. With energy grids struggling to keep up with this increase, we need to ensure that supply and demand are correctly matched. The Tactical Capacity Problem tackles this issue by choosing the optimal location of sustainable power sources to minimise the total energy loss. We extend an existing quantum approach of solving this problem in two ways. Firstly, we extend the problem to include capacity constraints, resulting in the Constrained Tactical Capacity Problem. Secondly, we propose two ways of optimising the performance of the resulting model via variable reduction. These optimisations are supported by numerical results obtained on both classical and quantum solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinkel, N., Schram, W., AlSkaif, T., Lampropoulos, I., Van Sark, W.: Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits. Appl. Energy 276, 115285 (2020)

    Article  Google Scholar 

  2. Croes, N., Phillipson, F., Schreuder, M.: Tactical congestion management: the optimal mix of decentralised generators in a district. In: CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, pp. 1–4. IET (2012)

    Google Scholar 

  3. Diekerhof, M., et al.: Production and demand management. In: Mathematical Optimization for Efficient and Robust Energy Networks, pp. 3–25. Springer (2021)

    Google Scholar 

  4. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106 (2000)

    Google Scholar 

  5. Faruqui, A., Sergici, S., Akaba, L.: Dynamic pricing of electricity for residential customers: the evidence from Michigan. Energ. Effi. 6, 571–584 (2013). https://doi.org/10.1007/s12053-013-9192-z

    Article  Google Scholar 

  6. Gitizadeh, M., Vahed, A.A., Aghaei, J.: Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms. Appl. Energ. 101, 655–666 (2012)

    Article  Google Scholar 

  7. Glover, F., Kochenberger, G., Du, Yu.: Quantum Bridge analytics i: a tutorial on formulating and using QUBO models. 4OR 17(4), 335–371 (2019). https://doi.org/10.1007/s10288-019-00424-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Griffiths, D.J., Schroeter, D.F.: Introduction to Quantum Mechanics. Cambridge University Press, Cambridge (2018)

    Google Scholar 

  9. Henderson, D., Jacobson, S.H., Johnson, A.W.: The theory and practice of simulated annealing. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 287–319. Springer, Boston (2003). https://doi.org/10.1007/0-306-48056-5_10

  10. IET: energy storage system: a potential, “Flexibility Resources” to accelerate the Decarbonisation of smart grid network (2021)

    Google Scholar 

  11. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  Google Scholar 

  12. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kopanos, G.M., Georgiadis, M.C., Pistikopoulos, E.N.: Energy production planning of a network of micro combined heat and power generators. Appl. Energy 102, 1522–1534 (2012)

    Article  Google Scholar 

  14. Korkas, C.D., Baldi, S., Kosmatopoulos, E.B.: Grid-connected microgrids: demand management via distributed control and human-in-the-loop optimization. In: Advances in Renewable Energies and Power Technologies, pp. 315–344. Elsevier (2018)

    Google Scholar 

  15. Lucas, A.: Ising formulations of many NP problems. Frontiers Phys. 2, 5 (2014)

    Article  Google Scholar 

  16. Matthiss, B., Momenifarahani, A., Binder, J.: Storage placement and sizing in a distribution grid with high PV generation. Energies 14(2), 303 (2021)

    Article  Google Scholar 

  17. McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: theory and practice. Synthesis Lectures Quantum Comput. 5(2), 1–93 (2014)

    Article  Google Scholar 

  18. Messiah, A.: Quantum Mechanics: Two Volumes Bound As One. Dover Publications Inc., Mineola (2014)

    Google Scholar 

  19. Mutule, A., et al.: Implementing smart city technologies to inspire change in consumer energy behaviour. Energies 14(14), 4310 (2021)

    Article  Google Scholar 

  20. Nations, U.: Kyoto protocol to the united nations framework convention on climate change. 2303 U.N.T.S. 162, United Nations, December 1997

    Google Scholar 

  21. Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2(1), 1–7 (2012)

    Article  Google Scholar 

  22. Phillipson, F., Bhatia, H.S.: Portfolio optimisation using the d-wave quantum annealer. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 45–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_4

    Chapter  Google Scholar 

  23. Phillipson, F., Chiscop, I.: A quantum approach for tactical capacity management of distributed electricity generation. In: Innovations for Community Services. Communications in Computer and Information Science, vol. 1585, pp. 323–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06668-9_23

  24. Times, N.: Dutch power grid overloaded in more places; no new connections possible, August 2022. https://nltimes.nl/2022/08/04/dutch-power-grid-overloaded-places-new-connections-possible

  25. Venegas-Andraca, S.E., Cruz-Santos, W., McGeoch, C., Lanzagorta, M.: A cross-disciplinary introduction to quantum annealing-based algorithms. Contemp. Phys. 59(2), 174–197 (2018)

    Article  Google Scholar 

  26. Verma, A., Lewis, M.: Variable reduction for quadratic unconstrained binary optimization. arXiv preprint arXiv:2105.07032 (2021)

  27. Wolske, K.S., Gillingham, K.T., Schultz, P.W.: Peer influence on household energy behaviours. Nat. Energy 5(3), 202–212 (2020)

    Article  Google Scholar 

  28. Yarkoni, S., Alekseyenko, A., Streif, M., Von Dollen, D., Neukart, F., Bäck, T.: Multi-car paint shop optimization with quantum annealing. In: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 35–41. IEEE (2021)

    Google Scholar 

  29. Yu, S., Nabil, T.: Applying the hubbard-stratonovich transformation to solve scheduling problems under inequality constraints with quantum annealing. Frontiers Phys. 9, 730685 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward van der Schoot .

Editor information

Editors and Affiliations

Appendices

A Derivation of the Penalty Functions

First, the constraint describing the upper bound, as shown in (13), will be transformed into a penalty function. We start by adding the total demand at time interval t to both sides of the equation. Because all \(s_{ijt}\) are non-negative, the left hand side is bounded from below by 0. Therefore, (13) is equivalent to

$$\begin{aligned} 0\le \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}x_{ij} \le C+\sum _{i=1}^{N}d_{it} \qquad \text {for all } t\in T_\text {up}. \end{aligned}$$
(22)

Furthermore, \(s_{ijt}\) and \(d_{it}\) are integer values. Therefore, the inequality constraint in (22) is equivalent to

$$\begin{aligned} \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}x_{ij} = I(\boldsymbol{y}_t; C+\sum _{i=1}^{N}d_{it}) \qquad \text {for all } t\in T_\text {up}, \end{aligned}$$
(23)

where I is the integer encoding function shown in (4) and \(\boldsymbol{y}_t\) is a vector containing auxiliary binary variables. Hence, the penalty function for the upper bound constraint is given by

$$\begin{aligned} P_\text {up}(\boldsymbol{x}, \boldsymbol{y}) = \sum _{t\in T_\text {up}}\left( \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}x_{ij} - I(\boldsymbol{y}_t; C+\sum _{i=1}^{N}d_{it})\right) ^2. \end{aligned}$$
(24)

The constraint describing the lower bound, as shown in (14), can be transformed in a penalty function in a similar manner. Note that (13) is equal to

$$\begin{aligned} \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}(1-x_{ij}) \le C + \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt} - d_{it}. \end{aligned}$$
(25)

Both \(s_{ijt}\) and \(1-x_{ij}\) are non-negative. Therefore, (25) is bounded from below by 0, i.e.,

$$\begin{aligned} 0\le \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}(1-x_{ij})\le C + \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt} - d_{it}. \end{aligned}$$
(26)

Similarly to the upper bound constraint, the fact that \(s_{ijt}\) and \(d_{it}\) are integer values can be used to transform the inequality constraint in (26) to the following equality constraint:

$$\begin{aligned} \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}(1-x_{ij}) = I(\boldsymbol{z}_t,C + \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}-d_{it}), \end{aligned}$$
(27)

where \(\boldsymbol{z}_t\) is a vector containing auxiliary binary variables. Therefore, the penalty function for the lower bound constraint is given by

$$\begin{aligned} P_\text {low}(\boldsymbol{x}, \boldsymbol{z}) = \sum _{t\in T_\text {low}}\left( \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}(1-x_{ij}) - I(\boldsymbol{z}_t,C + \sum _{i=1}^{N}\sum _{j=1}^{M}s_{ijt}-d_{it})\right) ^2. \end{aligned}$$
(28)

B Settings for Simulated Annealing and Quantum Annealing runs

For Simulated Annealing we used the D-Wave SimulatedAnnealingSampler with 500 reads, while all other settings were left as default. For Quantum Annealing, we used the D-Wave Advantage system. The number of reads was set to 500 and the annealing time was set to 1000 \(\mu \)s, while all other settings were left as default. From our experience, these values often yield good results for medium to large problem sizes. With these settings, the total QPU time was approximately 0.6 s. Lastly, \(\lambda _0\) and \(\lambda _1\) were set to 10N. An empirical study showed that these values did not have a significant influence on the result. Using these settings the results depicted in Fig. 4 were obtained.

C Python Packages

To generate the results shown in this work, we used the script below. We used Python 3.11 with packages as depicted in Table 1:

Table 1. Packages and versions used

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van der Linde, S.G., van der Schoot, W., Phillipson, F. (2023). Efficient Quantum Solution for the Constrained Tactical Capacity Problem for Distributed Electricity Generation. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2023. Communications in Computer and Information Science, vol 1876. Springer, Cham. https://doi.org/10.1007/978-3-031-40852-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40852-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40851-9

  • Online ISBN: 978-3-031-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics