Skip to main content

Quantum Approaches for Medoid Clustering

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2023)

Abstract

The \(k\)-medoids problem is an important problem in data clustering, which aims to partition a set of data points into \(k\) clusters, where each cluster is represented by a medoid, i.e., a data point that is the most centrally located in the cluster. Quantum annealing might be helpful in finding the solution to this problem faster. In this paper we compare three approaches for using the quantum annealer and QUBO-formulations to solve the \(k\)-medoids problem. The first approach revolves around a QUBO that encodes the problem as a whole. This approach turns out not to scale well for bigger problem sizes. The QUBO in the second approach comes from the literature and solves only the problem of finding medoids: assigning the datapoints to clusters requires an additional step. The QUBO formulation in the third approach is the same as in the second, but with different penalty parameters. We show that the second and third approaches scale better in terms of complexity than the first approach. However, the original penalty parameters in approach 2 (i.e. those suggested in the literature) do not work well for bigger instances. Taking different parameters makes this approach much better in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 144–153 (2006)

    Google Scholar 

  2. Arthur, D., Date, P.: Balanced k-means clustering on an adiabatic quantum computer. Quant. Inf. Process. 20, 1–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauckhage, C., Piatkowski, N., Sifa, R., Hecker, D., Wrobel, S.: A QUBO formulation of the k-medoids problem. In: LWDA, pp. 54–63 (2019)

    Google Scholar 

  4. Date, P., Arthur, D., Pusey-Nazzaro, L.: Qubo formulations for training machine learning models. Sci. Rep. 11(1), 10029 (2021)

    Article  Google Scholar 

  5. Feld, S., et al.: A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. Front. ICT 6, 13 (2019)

    Article  Google Scholar 

  6. Geetha, T., Arock, M.: Data clustering using modified k-medoids algorithm. Int. J. Med. Eng. Inf. 4(2), 109–124 (2012)

    Google Scholar 

  7. Glover, F., Kochenberger, G., Hennig, R., Du, Y.: Quantum bridge analytics i: a tutorial on formulating and using qubo models. Ann. Oper. Res. 314(1), 141–183 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  9. Hussain, H., Javaid, M.B., Khan, F.S., Dalal, A., Khalique, A.: Optimal control of traffic signals using quantum annealing. Quant. Inf. Process. 19(9), 1–18 (2020)

    Article  Google Scholar 

  10. Jie, Z., Li, Y., Liu, R.: Social network group identification based on local attribute community detection. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 443–447. IEEE (2019)

    Google Scholar 

  11. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Hoboken (2009)

    MATH  Google Scholar 

  13. Scikit learn: Toy datasets. https://scikit-learn.org/stable/datasets/toy_dataset.html/

  14. Li, Y.M., et al.: Quantum \(k\)-medoids algorithm using parallel amplitude estimation. Phys. Rev. A 107, 022421 (2023). https://doi.org/10.1103/PhysRevA.107.022421

    Article  MathSciNet  Google Scholar 

  15. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  17. MacQueen, J.: Classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  18. Matsumoto, N., Hamakawa, Y., Tatsumura, K., Kudo, K.: Distance-based clustering using qubo formulations. Sci. Rep. 12(1), 2669 (2022)

    Article  Google Scholar 

  19. McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: theory and practice. Synth. Lect. Quant. Comput. 5(2), 1–93 (2014)

    Article  Google Scholar 

  20. Mehidi, I., Jabri, D., Belkhiat, D.E.C.: Retinal image segmentation using clustering methods: performance analysis. In: IEEE 19th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1058–1066 (2022)

    Google Scholar 

  21. Mufarroha, F.A., Suzanti, I.O., Satoto, B.D., Syarief, M., Yunita, I., et al.: K-means and k-medoids clustering methods for customer segmentation in online retail datasets. In: IEEE 8th Information Technology International Seminar (ITIS), pp. 223–228 (2022)

    Google Scholar 

  22. Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)

    Article  Google Scholar 

  23. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Phillipson, F., Bontekoe, T., Chiscop, I.: Energy storage scheduling: a QUBO formulation for quantum computing. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2021. CCIS, vol. 1404, pp. 251–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75004-6_17

    Chapter  Google Scholar 

  25. Phillipson, F., Chiscop, I.: Multimodal container planning: A QUBO formulation and implementation on a quantum annealer. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 30–44. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_3

    Chapter  Google Scholar 

  26. Phillipson, F., Wezeman, R.S., Chiscop, I.: Indoor-outdoor detection in mobile networks using quantum machine learning approaches. Computers 10(6), 71 (2021)

    Article  Google Scholar 

  27. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  28. Saito, T., Yoshida, A., Kashikawa, T., Kimura, K., Amano, Y.: Combinatorial optimization-based hierarchical management of residential energy systems as virtual power plant. In: 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1833–1839. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Phillipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sijpesteijn, T., Phillipson, F. (2023). Quantum Approaches for Medoid Clustering. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2023. Communications in Computer and Information Science, vol 1876. Springer, Cham. https://doi.org/10.1007/978-3-031-40852-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40852-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40851-9

  • Online ISBN: 978-3-031-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics