Abstract
Evaluating argument strength in quantitative argumentation systems has received increasing attention in the field of abstract argumentation. The concept of acceptability degree is widely adopted in gradual semantics, however, it may not be sufficient in many practical applications. In this paper, we provide a novel quantitative method called fuzzy labeling for fuzzy argumentation systems, in which a triple of acceptability, rejectability, and undecidability degrees is used to evaluate argument strength. Such a setting sheds new light on defining argument strength and provides a deeper understanding of the status of arguments. More specifically, we investigate the postulates of fuzzy labeling, which present the rationality requirements for semantics concerning the acceptability, rejectability, and undecidability degrees. We then propose a class of fuzzy labeling semantics conforming to the above postulates and investigate the relations between fuzzy labeling semantics and existing work in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
For simplicity, we adopt the operation ‘min’ in this paper, and it can be extended to other operations, such as product and Lukasiewicz, for real-world applications.
References
Amgoud, L., Ben-Naim, J.: Evaluation of arguments from support relations: axioms and semantics. In: Proceedings of Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 900–906 (2016)
Amgoud, L., Ben-Naim, J.: Evaluation of arguments in weighted bipolar graphs. Int. J. Approximate Reasoning 99, 39–55 (2018)
Amgoud, L., Ben-Naim, J., Doder, D., Vesic, S.: Acceptability semantics for weighted argumentation frameworks. In: Proceedings of Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI, pp. 56–62 (2017)
Amgoud, L., Doder, D., Vesic, S.: Evaluation of argument strength in attack graphs: foundations and semantics. Artif. Intell. 302, 103607 (2022)
Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3–4), 413–436 (2009)
Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)
Baroni, P., Rago, A., Toni, F.: From fine-grained properties to broad principles for gradual argumentation: a principled spectrum. Int. J. Approximate Reasoning 105, 252–286 (2019)
Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argum. Comput. 6(1), 24–49 (2015)
Bench-Capon, T., Dunne, P.E.: Argumentation in artificial intelligence. Arti. Intell. 171(10–15), 619–641 (2007)
Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1/2), 203–235 (2001)
Beuselinck, V., Delobelle, J., Vesic, S.: A principle-based account of self-attacking arguments in gradual semantics. J. Log. Comput. 33(2), 230–256 (2023)
Bistarelli, S., Rossi, F., Santini, F.: A novel weighted defence and its relaxation in abstract argumentation. Int. J. Approximate Reasoning 92, 66–86 (2018)
Bistarelli, S., Santini, F.: Weighted argumentation. J. Appl. Logics 8(6), 1589–1622 (2021)
Bistarelli, S., Taticchi, C.: A labelling semantics and strong admissibility for weighted argumentation frameworks. J. Log. Comput. 32(2), 281–306 (2022)
Bouzarour-Amokrane, Y., Tchangani, A., Peres, F.: A bipolar consensus approach for group decision making problems. Expert Syst. Appl. 42(3), 1759–1772 (2015)
Cacioppo, J., Berntson, G.: Relationship between attitudes and evaluative space: a critical review, with emphasis on the separability of positive and negative substrates. Psychol. Bull. 115(3), 401–423 (1994)
Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006). https://doi.org/10.1007/11853886_11
Caminada, M.: An algorithm for computing semi-stable semantics. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 222–234. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75256-1_22
Caminada, M., Gabbay, D.: A logical account of formal argumentation. Stud. Logica. 93(2–3), 109–145 (2009)
Caminada, M., Pigozzi, G.: On judgment aggregation in abstract argumentation. Auton. Agent. Multi-Agent Syst. 22(1), 64–102 (2011)
Caminada, M., Pigozzi, G., Podlaszewski, M.: Manipulation in group argument evaluation. In: Proceedings of Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 121–126 (2011)
Cayrol, C., Lagasquie-Schiex, M.: Graduality in argumentation. J. Artif. Intell. Res. 23, 245–297 (2005)
Cerutti, F., Giacomin, M., Vallati, M., Zanella, M.: An SCC recursive meta-algorithm for computing preferred labellings in abstract argumentation. In: Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning, KR, pp. 42–51 (2014)
da Costa Pereira, C., Tettamanzi, A., Villata, S.: Changing one’s mind: erase or rewind? Possibilistic belief revision with fuzzy argumentation based on trust. In: Proceedings of Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 164–171 (2011)
Dempster, A.P.: The dempster-shafer calculus for statisticians. Int. J. Approximate Reasoning 48(2), 365–377 (2008)
Dubois, D., Fargier, H.: Qualitative decision making with bipolar information. In: Tenth International Conference on the Principles of Knowledge Representation and Reasoning, KR, pp. 175–185 (2006)
Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)
Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011)
Gabbay, D., Rodrigues, O.: Equilibrium states in numerical argumentation networks. Log. Univers. 9(4), 411–473 (2015)
Haenni, R.: Probabilistic argumentation. J. Appl. Log. 7(2), 155–176 (2009)
Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approximate Reasoning 54(1), 47–81 (2013)
Hunter, A., Polberg, S., Potyka, N., Rienstra, T., Thimm, M.: Probabilistic argumentation: a survey. In: Handbook of Formal Argumentation, vol. 2, pp. 397–441. College Publications (2021)
Janssen, J., De Cock, M., Vermeir, D.: Fuzzy argumentation frameworks. In: Proceedings of Information Processing and Management of Uncertainty in Knowledge-based Systems 2008, IPMU, pp. 513–520 (2008)
Jøsang, A.: Artificial reasoning with subjective logic. In: Proceedings of the Second Australian Workshop on Commonsense Reasoning, pp. 1–17 (1997)
Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2287–2292 (2011)
Li, H., Oren, N., Norman, T.: Probabilistic argumentation frameworks. In: Proceedings of First International Workshop on Theory and Applications of Formal Argumentation, TAFA, pp. 1–16 (2011)
Oren, N., Yun, B., Vesic, S., Baptista, M.: Inverse problems for gradual semantics. In: Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2719–2725 (2022)
Osgood, C., Suci, G., Tannenbaum, P.: The Measurement of Meaning. University of Illinois Press, Champaign (1957)
Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Fifteenth International Conference on Principles of Knowledge Representation and Reasoning, KR, pp. 63–73 (2016)
Schulz, C., Toni, F.: On the responsibility for undecisiveness in preferred and stable labellings in abstract argumentation. Artif. Intell. 262, 301–335 (2018)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Tamani, N., Croitoru, M.: Fuzzy argumentation system for decision support. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 442, pp. 77–86. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08795-5_9
van der Torre, L., Vesic, S.: The principle-based approach to abstract argumentation semantics. IfCoLog J. Logics Their Appl. 4(8), 2735–2778 (2017)
Walton, D.: Explanations and arguments based on practical reasoning. In: Proceedings of Twenty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 72–83 (2009)
Wang, R., Guiochet, J., Motet, G., Schön, W.: Safety case confidence propagation based on dempster-shafer theory. Int. J. Approximate Reasoning 107, 46–64 (2019)
Wu, J., Li, H., Oren, N., Norman, T.: Gödel fuzzy argumentation frameworks. In: Proceedings of Computational Models of Argument 2016, COMMA, pp. 447–458 (2016)
Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Acknowledgments
We would like to thank the anonymous reviewers for their helpful and thoughtful feedback. The work was supported by National Key Research Institutes for the Humanities and Social Sciences (No. 19JJD720002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
A full version including proofs can be found at https://arxiv.org/abs/2207.07339.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Z., Shen, Y. (2023). Fuzzy Labeling Semantics for Quantitative Argumentation. In: Herzig, A., Luo, J., Pardo, P. (eds) Logic and Argumentation. CLAR 2023. Lecture Notes in Computer Science(), vol 14156. Springer, Cham. https://doi.org/10.1007/978-3-031-40875-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-40875-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40874-8
Online ISBN: 978-3-031-40875-5
eBook Packages: Computer ScienceComputer Science (R0)