Skip to main content

Fuzzy Labeling Semantics for Quantitative Argumentation

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2023)

Abstract

Evaluating argument strength in quantitative argumentation systems has received increasing attention in the field of abstract argumentation. The concept of acceptability degree is widely adopted in gradual semantics, however, it may not be sufficient in many practical applications. In this paper, we provide a novel quantitative method called fuzzy labeling for fuzzy argumentation systems, in which a triple of acceptability, rejectability, and undecidability degrees is used to evaluate argument strength. Such a setting sheds new light on defining argument strength and provides a deeper understanding of the status of arguments. More specifically, we investigate the postulates of fuzzy labeling, which present the rationality requirements for semantics concerning the acceptability, rejectability, and undecidability degrees. We then propose a class of fuzzy labeling semantics conforming to the above postulates and investigate the relations between fuzzy labeling semantics and existing work in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity, we adopt the operation ‘min’ in this paper, and it can be extended to other operations, such as product and Lukasiewicz, for real-world applications.

References

  1. Amgoud, L., Ben-Naim, J.: Evaluation of arguments from support relations: axioms and semantics. In: Proceedings of Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI, pp. 900–906 (2016)

    Google Scholar 

  2. Amgoud, L., Ben-Naim, J.: Evaluation of arguments in weighted bipolar graphs. Int. J. Approximate Reasoning 99, 39–55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amgoud, L., Ben-Naim, J., Doder, D., Vesic, S.: Acceptability semantics for weighted argumentation frameworks. In: Proceedings of Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI, pp. 56–62 (2017)

    Google Scholar 

  4. Amgoud, L., Doder, D., Vesic, S.: Evaluation of argument strength in attack graphs: foundations and semantics. Artif. Intell. 302, 103607 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3–4), 413–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

    Article  Google Scholar 

  7. Baroni, P., Rago, A., Toni, F.: From fine-grained properties to broad principles for gradual argumentation: a principled spectrum. Int. J. Approximate Reasoning 105, 252–286 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argum. Comput. 6(1), 24–49 (2015)

    Article  MATH  Google Scholar 

  9. Bench-Capon, T., Dunne, P.E.: Argumentation in artificial intelligence. Arti. Intell. 171(10–15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1/2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beuselinck, V., Delobelle, J., Vesic, S.: A principle-based account of self-attacking arguments in gradual semantics. J. Log. Comput. 33(2), 230–256 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bistarelli, S., Rossi, F., Santini, F.: A novel weighted defence and its relaxation in abstract argumentation. Int. J. Approximate Reasoning 92, 66–86 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bistarelli, S., Santini, F.: Weighted argumentation. J. Appl. Logics 8(6), 1589–1622 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Bistarelli, S., Taticchi, C.: A labelling semantics and strong admissibility for weighted argumentation frameworks. J. Log. Comput. 32(2), 281–306 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bouzarour-Amokrane, Y., Tchangani, A., Peres, F.: A bipolar consensus approach for group decision making problems. Expert Syst. Appl. 42(3), 1759–1772 (2015)

    Article  Google Scholar 

  16. Cacioppo, J., Berntson, G.: Relationship between attitudes and evaluative space: a critical review, with emphasis on the separability of positive and negative substrates. Psychol. Bull. 115(3), 401–423 (1994)

    Article  Google Scholar 

  17. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006). https://doi.org/10.1007/11853886_11

    Chapter  MATH  Google Scholar 

  18. Caminada, M.: An algorithm for computing semi-stable semantics. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 222–234. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75256-1_22

    Chapter  Google Scholar 

  19. Caminada, M., Gabbay, D.: A logical account of formal argumentation. Stud. Logica. 93(2–3), 109–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Caminada, M., Pigozzi, G.: On judgment aggregation in abstract argumentation. Auton. Agent. Multi-Agent Syst. 22(1), 64–102 (2011)

    Article  Google Scholar 

  21. Caminada, M., Pigozzi, G., Podlaszewski, M.: Manipulation in group argument evaluation. In: Proceedings of Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 121–126 (2011)

    Google Scholar 

  22. Cayrol, C., Lagasquie-Schiex, M.: Graduality in argumentation. J. Artif. Intell. Res. 23, 245–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cerutti, F., Giacomin, M., Vallati, M., Zanella, M.: An SCC recursive meta-algorithm for computing preferred labellings in abstract argumentation. In: Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning, KR, pp. 42–51 (2014)

    Google Scholar 

  24. da Costa Pereira, C., Tettamanzi, A., Villata, S.: Changing one’s mind: erase or rewind? Possibilistic belief revision with fuzzy argumentation based on trust. In: Proceedings of Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 164–171 (2011)

    Google Scholar 

  25. Dempster, A.P.: The dempster-shafer calculus for statisticians. Int. J. Approximate Reasoning 48(2), 365–377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dubois, D., Fargier, H.: Qualitative decision making with bipolar information. In: Tenth International Conference on the Principles of Knowledge Representation and Reasoning, KR, pp. 175–185 (2006)

    Google Scholar 

  27. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gabbay, D., Rodrigues, O.: Equilibrium states in numerical argumentation networks. Log. Univers. 9(4), 411–473 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Haenni, R.: Probabilistic argumentation. J. Appl. Log. 7(2), 155–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approximate Reasoning 54(1), 47–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hunter, A., Polberg, S., Potyka, N., Rienstra, T., Thimm, M.: Probabilistic argumentation: a survey. In: Handbook of Formal Argumentation, vol. 2, pp. 397–441. College Publications (2021)

    Google Scholar 

  33. Janssen, J., De Cock, M., Vermeir, D.: Fuzzy argumentation frameworks. In: Proceedings of Information Processing and Management of Uncertainty in Knowledge-based Systems 2008, IPMU, pp. 513–520 (2008)

    Google Scholar 

  34. Jøsang, A.: Artificial reasoning with subjective logic. In: Proceedings of the Second Australian Workshop on Commonsense Reasoning, pp. 1–17 (1997)

    Google Scholar 

  35. Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI, pp. 2287–2292 (2011)

    Google Scholar 

  36. Li, H., Oren, N., Norman, T.: Probabilistic argumentation frameworks. In: Proceedings of First International Workshop on Theory and Applications of Formal Argumentation, TAFA, pp. 1–16 (2011)

    Google Scholar 

  37. Oren, N., Yun, B., Vesic, S., Baptista, M.: Inverse problems for gradual semantics. In: Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 2719–2725 (2022)

    Google Scholar 

  38. Osgood, C., Suci, G., Tannenbaum, P.: The Measurement of Meaning. University of Illinois Press, Champaign (1957)

    Google Scholar 

  39. Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Fifteenth International Conference on Principles of Knowledge Representation and Reasoning, KR, pp. 63–73 (2016)

    Google Scholar 

  40. Schulz, C., Toni, F.: On the responsibility for undecisiveness in preferred and stable labellings in abstract argumentation. Artif. Intell. 262, 301–335 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  MATH  Google Scholar 

  42. Tamani, N., Croitoru, M.: Fuzzy argumentation system for decision support. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 442, pp. 77–86. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08795-5_9

    Chapter  Google Scholar 

  43. van der Torre, L., Vesic, S.: The principle-based approach to abstract argumentation semantics. IfCoLog J. Logics Their Appl. 4(8), 2735–2778 (2017)

    Google Scholar 

  44. Walton, D.: Explanations and arguments based on practical reasoning. In: Proceedings of Twenty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 72–83 (2009)

    Google Scholar 

  45. Wang, R., Guiochet, J., Motet, G., Schön, W.: Safety case confidence propagation based on dempster-shafer theory. Int. J. Approximate Reasoning 107, 46–64 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, J., Li, H., Oren, N., Norman, T.: Gödel fuzzy argumentation frameworks. In: Proceedings of Computational Models of Argument 2016, COMMA, pp. 447–458 (2016)

    Google Scholar 

  47. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their helpful and thoughtful feedback. The work was supported by National Key Research Institutes for the Humanities and Social Sciences (No. 19JJD720002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Shen .

Editor information

Editors and Affiliations

Appendix

Appendix

A full version including proofs can be found at https://arxiv.org/abs/2207.07339.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Shen, Y. (2023). Fuzzy Labeling Semantics for Quantitative Argumentation. In: Herzig, A., Luo, J., Pardo, P. (eds) Logic and Argumentation. CLAR 2023. Lecture Notes in Computer Science(), vol 14156. Springer, Cham. https://doi.org/10.1007/978-3-031-40875-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40875-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40874-8

  • Online ISBN: 978-3-031-40875-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics