Abstract
In the present paper, we study the dynamic aspect of modal logic with counting ML\((\#)\). We study several kinds of model updates where we have reduction axioms, namely two kinds of public announcements, preference upgrade and deleting arrows from \(\varphi _1\) to \(\varphi _2\). We also show that certain PDL program constructions cannot be defined in the basic modal logic with counting ML\((\#)\).
The research of the first author is supported by Tsinghua University Initiative Scientific Research Program. The research of the second author is supported by the Taishan Young Scholars Program of the Government of Shandong Province, China (No.tsqn201909151).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Antonelli, G.A.: Numerical abstraction via the Frege quantifier. Notre Dame J. Formal Logic 51(2), 161–179 (2010)
Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common knowledge and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 1998), Evanston, IL, USA, 22–24 July 1998, pp. 43–56. Morgan Kaufmann (1998)
Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. A Bradford Book. MIT Press, Cambridge (2004)
Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)
Fu, X., Zhao, Z.: Correspondence theory for modal logic with counting ML(\(\#\)) (2023, submitted)
Fu, X., Zhao, Z.: Decidability for modal logic with counting ML(\(\#\)) in different frame classes (2023, submitted)
Fu, X., Zhao, Z.: Modal logic with counting: definability, semilinear sets and correspondence theory (2023, submitted)
Fu, X., Zhao, Z.: Model-theoretic aspects of modal logic with counting ML(\(\#\)) (2023, submitted)
Goldblatt, R.: Axiomatising the Logic of Computer Programming. Lecture Notes in Computer Science, Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0022481
Herre, H., Krynicki, M., Pinus, A., Väänänen, J.: The Härtig quantifier: a survey. J. Symb. Log. 56(4), 1153–1183 (1991)
Otto, M.: Bounded Variable Logics and Counting: A Study in Finite Models. Lecture Notes in Logic. Cambridge University Press, Cambridge (2017)
Parikh, R.: The completeness of propositional dynamic logic. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978). https://doi.org/10.1007/3-540-08921-7_88
Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
Rescher, N.: Plurality quantification. J. Symb. Log. 27, 373–374 (1962)
Segerberg, K.: A completeness theorem in the modal logic of programs. Banach Center Publ. 9(1), 31–46 (1982)
Snyder, J.: Product update for agents with bounded memory. Manuscript, Department of Philosophy, Stanford University (2004)
van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Classical Logics 17(2), 129–155 (2007)
van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2014)
van Benthem, J., Icard, T.: Interleaving logic and counting. Prepublication (PP) Series PP-2021-10, ILLC, University of Amsterdam (2021)
van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. J. Appl. Non-Classical Logics 17(2), 157–182 (2007)
van der Hoek, W.: Qualitative modalities. Internat. J. Uncertain. Fuzziness Knowl.-Based Syst. 4(1), 45–60 (1996)
van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B.: Handbook of Epistemic Logic. College Publications (2015)
van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fu, X., Zhao, Z. (2023). Dynamic Modal Logic with Counting: When Reduction Axioms Work and Fail. In: Herzig, A., Luo, J., Pardo, P. (eds) Logic and Argumentation. CLAR 2023. Lecture Notes in Computer Science(), vol 14156. Springer, Cham. https://doi.org/10.1007/978-3-031-40875-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-40875-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40874-8
Online ISBN: 978-3-031-40875-5
eBook Packages: Computer ScienceComputer Science (R0)