Skip to main content

Dynamic Modal Logic with Counting: When Reduction Axioms Work and Fail

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2023)

Abstract

In the present paper, we study the dynamic aspect of modal logic with counting ML\((\#)\). We study several kinds of model updates where we have reduction axioms, namely two kinds of public announcements, preference upgrade and deleting arrows from \(\varphi _1\) to \(\varphi _2\). We also show that certain PDL program constructions cannot be defined in the basic modal logic with counting ML\((\#)\).

The research of the first author is supported by Tsinghua University Initiative Scientific Research Program. The research of the second author is supported by the Taishan Young Scholars Program of the Government of Shandong Province, China (No.tsqn201909151).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonelli, G.A.: Numerical abstraction via the Frege quantifier. Notre Dame J. Formal Logic 51(2), 161–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common knowledge and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 1998), Evanston, IL, USA, 22–24 July 1998, pp. 43–56. Morgan Kaufmann (1998)

    Google Scholar 

  3. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. A Bradford Book. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 194–211 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, X., Zhao, Z.: Correspondence theory for modal logic with counting ML(\(\#\)) (2023, submitted)

    Google Scholar 

  6. Fu, X., Zhao, Z.: Decidability for modal logic with counting ML(\(\#\)) in different frame classes (2023, submitted)

    Google Scholar 

  7. Fu, X., Zhao, Z.: Modal logic with counting: definability, semilinear sets and correspondence theory (2023, submitted)

    Google Scholar 

  8. Fu, X., Zhao, Z.: Model-theoretic aspects of modal logic with counting ML(\(\#\)) (2023, submitted)

    Google Scholar 

  9. Goldblatt, R.: Axiomatising the Logic of Computer Programming. Lecture Notes in Computer Science, Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0022481

    Book  MATH  Google Scholar 

  10. Herre, H., Krynicki, M., Pinus, A., Väänänen, J.: The Härtig quantifier: a survey. J. Symb. Log. 56(4), 1153–1183 (1991)

    Article  MATH  Google Scholar 

  11. Otto, M.: Bounded Variable Logics and Counting: A Study in Finite Models. Lecture Notes in Logic. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  12. Parikh, R.: The completeness of propositional dynamic logic. In: Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978). https://doi.org/10.1007/3-540-08921-7_88

    Chapter  Google Scholar 

  13. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rescher, N.: Plurality quantification. J. Symb. Log. 27, 373–374 (1962)

    Google Scholar 

  15. Segerberg, K.: A completeness theorem in the modal logic of programs. Banach Center Publ. 9(1), 31–46 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Snyder, J.: Product update for agents with bounded memory. Manuscript, Department of Philosophy, Stanford University (2004)

    Google Scholar 

  17. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Classical Logics 17(2), 129–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  19. van Benthem, J., Icard, T.: Interleaving logic and counting. Prepublication (PP) Series PP-2021-10, ILLC, University of Amsterdam (2021)

    Google Scholar 

  20. van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. J. Appl. Non-Classical Logics 17(2), 157–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. van der Hoek, W.: Qualitative modalities. Internat. J. Uncertain. Fuzziness Knowl.-Based Syst. 4(1), 45–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B.: Handbook of Epistemic Logic. College Publications (2015)

    Google Scholar 

  23. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, X., Zhao, Z. (2023). Dynamic Modal Logic with Counting: When Reduction Axioms Work and Fail. In: Herzig, A., Luo, J., Pardo, P. (eds) Logic and Argumentation. CLAR 2023. Lecture Notes in Computer Science(), vol 14156. Springer, Cham. https://doi.org/10.1007/978-3-031-40875-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40875-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40874-8

  • Online ISBN: 978-3-031-40875-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics