Skip to main content

Weakest Link in Formal Argumentation: Lookahead and Principle-Based Analysis

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2023)

Abstract

In this paper, we introduce a new definition of weakest link attack relation assignment based on lookahead, and compare this new lookahead definition with two existing ones in the literature using a principle-based analysis. We adopt a formal framework for such attack relation assignments that was introduced by Dung in 2016. We show that our lookahead definition does not satisfy context independence, we introduce a new principle called weak context independence, and we show that lookahead weakest link satisfies weak context independence. We also show that lookahead weakest link is the closest approximation to Brewka’s prioritised default logic PDL, also known as the greedy approach. For PDL, we prove an impossibility result under Dung’s axioms. Our results generalise earlier findings restricted to total orders to the more general case of modular orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Structured argumentation builds arguments from the rules and facts of a knowledge base. Abstract argumentation just assumes an attack relation to define sets of arguments that are collectively acceptable, while ignoring the underlying logic that defines attacks as logical conflicts.

  2. 2.

    These priorities give the same outputs for the fitness-loving Scot and snoring professor [23, 24], which are just variants of Example 1 with facts. Other variants of Example 1 with facts and strict rules [6, 7] give the (non-)teaching dean professor scenario [13], see Example 5 below. For further variants of Example 1 defined by partial orders we refer to Dung’s paper in 2018 [16]. A brief discussion for the case of partial orders can be found in Sect. 7.

  3. 3.

    As a consequence, the atoms in \(\mathscr {L}\) here only consist of domain atoms representing propositions about the concerned domains. Dung also considers non-domain atoms \(ab_d\) for the non-applicability of a defeasible rule d, and undercuts as strict rules \(b_1, \ldots , b_n\rightarrow ab_{d}\) that act against the applicability of a defeasible rule d in RD [13]. We leave for future work the extension of our current results to knowledge bases with strict rules and undercutting arguments.

  4. 4.

    A reader might wonder why Definition 15 does not simply state: \((A,B) \in att_{lwl}(K)\) iff \((A,B) \in att_{dwl}(K)\) and A is \(\sqsubseteq \)-maximal with \((\cdot , B) \in att_{dwl}(K)\). The reason is that, under these attacks, one can define some K whose stable belief sets include logically contradictory sets.

  5. 5.

    The notion of undercut from Principle 7 is the same as in Pollock [27] and ASPIC+ [24]: an argument A undercuts B at \(B' \in sub(B)\) iff the last rule \(d = last(B') \in RD\) and A states that this defeasible rule d is not applicable \(cnl(A) = ab_{d}\).

References

  1. Arrow, K.J.: A difficulty in the concept of social welfare. J. Polit. Econ. 54(4), 328–346 (1950)

    Article  Google Scholar 

  2. Beirlaen, M., Heyninck, J., Pardo, P., Straßer, C.: Argument strength in formal argumentation. J. Log. Their Appl. 5(3), 629–676 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)

    Google Scholar 

  4. Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(1), 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brewka, G., Eiter, T.: Preferred answer sets for extented logic programs. Artif. Intell. 109, 297–356 (1999)

    Article  MATH  Google Scholar 

  6. Brewka, G.: Reasoning about priorities in default logic. In: Hayes-Roth, B., Korf, R.E. (eds.) Proceedings of the 12th National Conference on AI, vol. 2, pp. 940–945. AAAI Press/The MIT Press (1994)

    Google Scholar 

  7. Brewka, G., Eiter, T.: Prioritizing default logic. In: Hölldobler, S. (ed.) Intellectics and Computational Logic. Applied Logic Series, vol. 19, pp. 27–45. Kluwer (2000)

    Google Scholar 

  8. Caminada, M.: Rationality postulates: applying argumentation theory for non-monotonic reasoning. FLAP 4(8), 2707–2734 (2017)

    Google Scholar 

  9. Delgrande, J.P., Schaub, T.: Expressing preferences in default logic. Artif. Intell. 123(1–2), 41–87 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2), 308–334 (2004)

    Article  MathSciNet  Google Scholar 

  11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dung, P.M.: An axiomatic analysis of structured argumentation for prioritized default reasoning. In: Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 267–272. IOS Press (2014)

    Google Scholar 

  13. Dung, P.M.: An axiomatic analysis of structured argumentation with priorities. Artif. Intell. 231, 107–150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dung, P.M.: A canonical semantics for structured argumentation with priorities. In: Baroni, P., Gordon, T.F., Scheffler, T., Stede, M. (eds.) Computational Models of Argument - Proceedings of COMMA. Frontiers in Artificial Intelligence and Applications, vol. 287, pp. 263–274. IOS Press (2016)

    Google Scholar 

  15. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_10

    Chapter  Google Scholar 

  16. Dung, P.M., Thang, P.M.: Fundamental properties of attack relations in structured argumentation with priorities. Artif. Intell. 255, 1–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dung, P.M., Thang, P.M., Son, T.C.: On structured argumentation with conditional preferences. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 2792–2800. AAAI Press (2019)

    Google Scholar 

  18. Goodman, N.: Fact, Fiction, and Forecast. Harvard University Press, Cambridge (1955)

    Google Scholar 

  19. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation semantics for defeasible logic. J. Log. Comput. 14(5), 675–702 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lehtonen, T., Wallner, J.P., Järvisalo, M.: Computing stable conclusions under the weakest-link principle in the ASPIC+ argumentation formalism. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, vol. 19 (1), pp. 215–225 (2022)

    Google Scholar 

  22. Liao, B., Oren, N., van der Torre, L., Villata, S.: Prioritized norms in formal argumentation. J. Log. Comput. 29(2), 215–240 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Modgil, S., Prakken, H.: The \({ASPIC}^{+}\) framework for structured argumentation: a tutorial. Argument Comput. 5(1), 31–62 (2014)

    Article  Google Scholar 

  25. Modgil, S., Prakken, H.: Abstract rule-based argumentation. In: Baroni, P., et al. (eds.) Handbook of Formal Argumentation, vol. 1, pp. 287–364. College Publications, Norcross (2018)

    Google Scholar 

  26. Pardo, P., Straßer, C.: Modular orders on defaults in formal argumentation. J. Logic Comput. (2022)

    Google Scholar 

  27. Pollock, J.L.: Defeasible reasoning. Cogn. Sci. 11(4), 481–518 (1987)

    Article  Google Scholar 

  28. Pollock, J.L.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pollock, J.L.: Justification and defeat. Artif. Intell. 67(2), 377–407 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pollock, J.L.: Cognitive Carpentry: A Blueprint for How to Build a Person. MIT Press, Cambridge (1995)

    Google Scholar 

  31. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artif. Intell. 133(1–2), 233–282 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pollock, J.L.: Defeasible reasoning and degrees of justification. Argument Comput. 1(1), 7–22 (2010)

    Article  Google Scholar 

  33. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: Handbook of Philosophical Logic, pp. 219–318 (2002)

    Google Scholar 

  34. Young, A.P., Modgil, S., Rodrigues, O.: Prioritised default logic as rational argumentation. In: Jonker, C.M., Marsella, S., Thangarajah, J., Tuyls, K. (eds.) Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, pp. 626–634. ACM (2016)

    Google Scholar 

  35. Young, A.P., Modgil, S., Rodrigues, O.: On the interaction between logic and preference in structured argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2017. LNCS (LNAI), vol. 10757, pp. 35–50. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75553-3_3

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the three anonymous reviewers for their helpful comments and suggestions. L. van der Torre is financially supported by FNR through the project OPEN O20/14776480, the G.A. INTER/CHIST/19/14589586 Horizon 2020 grant, and EU’s Justice programme under grant 101007420 (ADELE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Pardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C., Pardo, P., van der Torre, L., Yu, L. (2023). Weakest Link in Formal Argumentation: Lookahead and Principle-Based Analysis. In: Herzig, A., Luo, J., Pardo, P. (eds) Logic and Argumentation. CLAR 2023. Lecture Notes in Computer Science(), vol 14156. Springer, Cham. https://doi.org/10.1007/978-3-031-40875-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40875-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40874-8

  • Online ISBN: 978-3-031-40875-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics