Skip to main content

Providing Personalized Explanations: A Conversational Approach

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2023)

Abstract

The increasing applications of AI systems require personalized explanations for their behaviors to various stakeholders since the stakeholders may have various backgrounds. In general, a conversation between explainers and explainees not only allows explainers to obtain the explainees’ background, but also allows explainees to better understand the explanations. In this paper, we propose an approach for an explainer to communicate personalized explanations to an explainee through having consecutive conversations with the explainee. We prove that the conversation terminates due to the explainee’s justification of the initial claim as long as there exists an explanation for the initial claim that the explainee understands and the explainer is aware of.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This property requires a so-called axiomatically appropriate constant specification.

References

  1. Antoniad, A.M., et al.: Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review. Appl. Sci. 11(11), 5088 (2021)

    Article  Google Scholar 

  2. Artemov, S.: Explicit provability and constructive semantics. Bull. Symbolic Logic 7(1), 1–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. University Press, Cambridge (2019)

    Google Scholar 

  4. Artemov, S.N.: The ontology of justifications in the logical setting. Studia Logica 100(1–2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x, published online February 2012

  5. Artemov, S.N., Nogina, E.: Introducing justification into epistemic logic. J. Log. Comput. 15(6), 1059–1073 (2005). https://doi.org/10.1093/logcom/exi053

    Article  MathSciNet  MATH  Google Scholar 

  6. Fitting, M.: The logic of proofs, semantically. APAL 132(1), 1–25 (2005). https://doi.org/10.1016/j.apal.2004.04.009

    Article  MathSciNet  MATH  Google Scholar 

  7. Hilton, D.J.: Conversational processes and causal explanation. Psychol. Bull. 107(1), 65 (1990)

    Article  Google Scholar 

  8. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, Volume 9, pp. 437–458. College Publications (2012)

    Google Scholar 

  9. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications (2019)

    Google Scholar 

  10. Lehmann, E., Studer, T.: Subset models for justification logic. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 433–449. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6_26

    Chapter  MATH  Google Scholar 

  11. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007). https://doi.org/10.1007/s11229-007-9168-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Tsai, C.H., Brusilovsky, P.: The effects of controllability and explainability in a social recommender system. User Model. User-Adap. Inter. 31(3), 591–627 (2021)

    Article  Google Scholar 

  14. Xu, C., Wang, Y., Studer, T.: A logic of knowing why. Synthese 198, 1259–1285 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work is financially supported by the Swiss National Science Foundation grant 200020_184625.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jieting Luo or Thomas Studer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, J., Studer, T., Dastani, M. (2023). Providing Personalized Explanations: A Conversational Approach. In: Herzig, A., Luo, J., Pardo, P. (eds) Logic and Argumentation. CLAR 2023. Lecture Notes in Computer Science(), vol 14156. Springer, Cham. https://doi.org/10.1007/978-3-031-40875-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40875-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40874-8

  • Online ISBN: 978-3-031-40875-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics