Skip to main content

An Analysis of Satellite-Based Machine Learning Models to Estimate Global Solar Irradiance at a Horizontal Plane

  • Conference paper
  • First Online:
Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET 2023)

Abstract

Accurate solar resource information is a fundamental requirement for solar energy ventures. The lack of precision in solar radiation data can significantly affect the success of the projects. Argentina has solar radiation ground measurement networks. The information obtained through this method is limited due to its spatial sparsity, since it is only possible to measure with appropriate quality in some sites across the territory. To overcome this limitation, it is common to generate models capable of estimating solar radiation through satellite images, which provide spatial resolution. This work develops and validates an empirical model for this purpose based on Machine Learning (ML), demonstrating that it is a useful and accurate tool to be considered. This allows ventures that make use of this type of energy to have greater certainty in the availability of the resource, and therefore in the decision-making process. Variables obtained from images of the geostationary meteorological satellite GOES-16, McClear clear-sky model estimates, and geometrically calculated information are used as input to the algorithms. The results of the ML models are compared with estimates from pre-existing models for the region that incorporate physical modelings, such as Heliosat-4 and CIM-ESRA. The evaluation shows a higher performance of the ML methods when multi-scale satellite information is used as input. The incorporation of multi-scale satellite data is not yet implemented in solar radiation physical modeling, which is an advantage of ML modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abal, G., Aicardi, D., Alonso-Suárez, R., Laguarda, A.: Performance of empirical models for diffuse fraction in Uruguay. Sol. Energy 141, 166–181 (2017)

    Article  Google Scholar 

  2. Aristegui, R., Iturbide, P., Stern, V., Lell, J., Righini, R.: Variabilidad de corto plazo y valores extremos de la irradiancia solar en la Pampa Húmeda Argentina. Avances en Energías Renovables y Medio Ambiente (AVERMA) 23, 19–30 (2019)

    Google Scholar 

  3. Cano, D., Monget, J., Albuisson, M., Guillard, H., Regas, N., Wald, L.: A method for the determination of global solar radiation from meteorological satellite data. Sol. Energy 37, 31–39 (1986)

    Article  Google Scholar 

  4. Emde, C., et al.: The Libradtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 9, 1647–1672 (2016)

    Article  Google Scholar 

  5. Huang, G., et al.: Estimating surface solar irradiance from satellites: past, present, and future perspectives. Remote Sens. Environ. 233, 111371 (2019). https://doi.org/10.1016/j.rse.2019.111371

    Article  Google Scholar 

  6. Jiménez, V.A., Will, A., Rodríguez, S.: Estimación de radiación solar horaria utilizando modelos empíricos y redes neuronales artificiales. Cienc. Tecn. 17, 29–45 (2017)

    Google Scholar 

  7. Kriebel, K., Gesell, G., Kastner, M., Mannstein, H.: The cloud analysis tool APOLLO: Improvements and validations. Int. J. Remote Sens. 24(12), 2389–2408 (2003)

    Article  Google Scholar 

  8. Laguarda, A., et al.: Validación de modelos satelitales Heliosat-4 y CIM-ESRA para la estimación de irradiancia solar en la Pampa Húmeda. Energías Renovables y Medio Ambiente 48, 1–9 (2021)

    Google Scholar 

  9. Laguarda, A., Giacosa, G., Alonso-Suárez, R., Abal, G.: Performance of the site-adapted CAMS database and locally adjusted cloud index models for estimating global solar horizontal irradiation over the Pampa Húmeda region. Sol. Energy 199, 295–307 (2020)

    Article  Google Scholar 

  10. Laguarda, A., Abal, G.: Clear-sky broadband irradiance: first model assessment in Uruguay. In: Proceedings of the ISES Solar World Congress, pp. 1360–1371, ISBN:978-39-81465-97-6. https://doi.org/10.18086/swc.2017.21.05

  11. Lefevre, M., et al.: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Techn. 6(9), 2403–2418 (2013)

    Article  Google Scholar 

  12. Linke, F.: Transmissions-koeffizient und trübungsfaktor. Meteorol. Mag. Beiträge Zur Physik der Atmosphäre Beitr 10, 91–103 (1922)

    Google Scholar 

  13. Long, C.N., Shi, Y.: An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos. Sci. J. 2(1) (2008)

    Google Scholar 

  14. McArthur, L.: Baseline Surface Radiation Network (BSRN) Operations Manual. Td-no. 1274, wrcp/wmo, World Meteorological Organization (WMO, www.wmo.org)

  15. Olivera, L., Atia, J., Amet, L., Osio, J., Morales, M., Cappelletti, M.: Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo. Avances en Energías Renovables y Medio Ambiente-AVERMA 24, 232–243 (2020)

    Google Scholar 

  16. Perez, R., et al.: A new operational model for satellite-derived irradiances: description and validation. Sol. Energy 73, 307–317 (2002)

    Article  Google Scholar 

  17. Perez, R., Ineichen, P., Seals, R., Zelenka, A.: Making full use of the clearness index for parameterizing hourly insolation conditions. Sol. Energy 45(2), 111–114 (1990)

    Article  Google Scholar 

  18. Perez, R., Schlemmer, J., Hemker, K., Kivalov, S., Kankiewicz, A., Gueymard, C.: Satellite-to-irradiance modeling - a new version of the SUNY model. In: 42nd Photovoltaic Specialist Conference (PVSC), pp. 1–7 (2015)

    Google Scholar 

  19. Qu, Z., et al.: Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteorol. Z. 26(1), 33–57 (2017)

    Article  Google Scholar 

  20. Raichijk, C.: Estimación de la irradiación solar global en Argentina mediante el uso de redes neuronales. Energías Renovables y Medio Ambiente 22, 1–6 (2008). (ISSN:0328-932X)

    Google Scholar 

  21. Rigollier, C., Lefevre, M., Wald, L.: The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 77(2), 159–169 (2004)

    Article  Google Scholar 

  22. Sayago, S., Bocco, M., Ovando, G., Willington, E. A.: Radiación solar horaria: modelos de estimación a partir de variables meteorológicas básicas. Avances en Energías Renovables y Medio Ambiente 15 (2011)

    Google Scholar 

  23. Verbois, H., Saint-Drenan, Y.-M., Becquet, V., Gschwind, B., Blanc, P.: Retrieval of surface solar irradiance from satellite using machine learning: pitfalls and perspectives, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-243

  24. Yang, D.: Choice of clear-sky model in solar forecasting. J. Renew. Sustain. Energy 12, 026101 (2020). https://doi.org/10.1063/5.0003495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Iturbide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iturbide, P., Alonso-Suarez, R., Ronchetti, F. (2023). An Analysis of Satellite-Based Machine Learning Models to Estimate Global Solar Irradiance at a Horizontal Plane. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2023. Communications in Computer and Information Science, vol 1828. Springer, Cham. https://doi.org/10.1007/978-3-031-40942-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40942-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40941-7

  • Online ISBN: 978-3-031-40942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics