Abstract
Numerous methods have been developed for testing Connected and Automated Vehicles (CAV). The scenario-based approach is considered the most promising as it reduces the number of scenarios required to certify the CAV system. In this study, we propose a refined six-step methodology that includes two additional steps to compute a critical index for scenarios and use it to guide the sampling process The methodology starts with the generation of functional scenarios using a 5-layer ontology. Next, the driving data is processed to determine the criticality indices of the functional scenarios. This is achieved by using a latent Dirichlet Allocation technique and a Least Means Squares method. Finally, the sampling process is built on a scenario reduction based on clustering and a specific metric related to the a priori criticality indices. Overall, our refined approach enhances the scenario-based methodology by incorporating criticality indices to guide the sampling process, which can reduce drastically the number of scenarios needed for certification of CAV systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Pegasus Project and Open Scenario (ASAM).
References
Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy Pract. 94, 182–193 (2016). https://doi.org/10.1016/j.tra.2016.09.010
Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020). https://doi.org/10.1109/ACCESS.2020.2993730
Vater, L., Pütz, A., Tellis, L., Eckstein, L.: Test case selection method for the verification of automated driving systems. ATZelectronics Worldwide 16(11), 40–45 (2021). https://doi.org/10.1007/s38314-021-0701-0
Riedmaier, S., Schneider, D., Watzenig, D., Diermeyer, F., Schick, B.: Model validation and scenario selection for virtual-based homologation of automated vehicles. Appl. Sci. 11(1), 35 (2020). https://doi.org/10.3390/app110100
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Blache, H., Laharotte, P-A., El Faouzi, N-E.: How to rationalise the sampling of test-scenarios in automated driving based on criticality metrics? In: 2023 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Nice, France, 14–16 June 2023 (2023)
Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, pp. 1813–1820 (2018). https://doi.org/10.1109/IVS.2018.8500632
De Gelder, E., et al.: Towards an ontology for scenario definition for the assessment of automated vehicles: an object-oriented framework. IEEE Trans. Intell. Veh. 7(2), 300–314 (2022). https://doi.org/10.1109/TIV.2022.3144803
Moers, T., Vater, L., Krajewski, R., Bock, J., Zlocki, A., Eckstein, L.: The exiD dataset: a real-world trajectory dataset of highly interactive highway scenarios in Germany. In: 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, pp. 958–964 (2022). https://doi.org/10.1109/IV51971.2022.9827305
Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highd dataset.: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, pp. 2118–2125 (2018)
Urbieta, I., Nieto, M., García, M., Otaegui, O.: Design and implementation of an ontology for semantic labeling and testing: automotive global ontology (AGO). Appl. Sci. 11(17), 7782 (2021). https://doi.org/10.3390/app11177782
Chao, Q., et al.: A survey on visual traffic simulation: models, evaluations, and applications in autonomous driving. Comput. Graph. Forum 39, 287–308 (2020). https://doi.org/10.1111/cgf.13803
Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Spain, pp. 982–988 (2015). https://doi.org/10.1109/ITSC.2015.164
Weber, H., et al.: A framework for definition of logical scenarios for safety assurance of automated driving. Traffic Inj. Prev. 20(sup1), S65–S70 (2019). https://doi.org/10.1080/15389588.2019.1630827
Zhang, X., et al.: Finding critical scenarios for automated driving systems: a systematic mapping study. IEEE Trans. Softw. Eng. 49(3), 991–1026 (2023). https://doi.org/10.1109/TSE.2022.3170122
Blache, H., Laharotte, P.A., El Faouzi, N.E.: Evaluation des cas d’usages des véhicules automatisés et connectés: Vers une approche basée sur les scénarios visant à réduire la quantité de tests en simulation ou environnement réel. In 20èmes Rencontres des Jeunes Chercheurs en Intelligence Artificielle (RJCIA), Saint-Etienne, France (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Blache, H., Laharotte, PA., El Faouzi, NE. (2023). Towards an Effective Generation of Functional Scenarios for AVs to Guide Sampling. In: Guiochet, J., Tonetta, S., Schoitsch, E., Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182. Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-40953-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40952-3
Online ISBN: 978-3-031-40953-0
eBook Packages: Computer ScienceComputer Science (R0)