Skip to main content

Towards an Effective Generation of Functional Scenarios for AVs to Guide Sampling

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops (SAFECOMP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14182))

Included in the following conference series:

  • 1017 Accesses

Abstract

Numerous methods have been developed for testing Connected and Automated Vehicles (CAV). The scenario-based approach is considered the most promising as it reduces the number of scenarios required to certify the CAV system. In this study, we propose a refined six-step methodology that includes two additional steps to compute a critical index for scenarios and use it to guide the sampling process The methodology starts with the generation of functional scenarios using a 5-layer ontology. Next, the driving data is processed to determine the criticality indices of the functional scenarios. This is achieved by using a latent Dirichlet Allocation technique and a Least Means Squares method. Finally, the sampling process is built on a scenario reduction based on clustering and a specific metric related to the a priori criticality indices. Overall, our refined approach enhances the scenario-based methodology by incorporating criticality indices to guide the sampling process, which can reduce drastically the number of scenarios needed for certification of CAV systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pegasus Project and Open Scenario (ASAM).

References

  1. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy Pract. 94, 182–193 (2016). https://doi.org/10.1016/j.tra.2016.09.010

    Article  Google Scholar 

  2. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020). https://doi.org/10.1109/ACCESS.2020.2993730

    Article  Google Scholar 

  3. Vater, L., Pütz, A., Tellis, L., Eckstein, L.: Test case selection method for the verification of automated driving systems. ATZelectronics Worldwide 16(11), 40–45 (2021). https://doi.org/10.1007/s38314-021-0701-0

    Article  Google Scholar 

  4. Riedmaier, S., Schneider, D., Watzenig, D., Diermeyer, F., Schick, B.: Model validation and scenario selection for virtual-based homologation of automated vehicles. Appl. Sci. 11(1), 35 (2020). https://doi.org/10.3390/app110100

    Article  Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  6. Blache, H., Laharotte, P-A., El Faouzi, N-E.: How to rationalise the sampling of test-scenarios in automated driving based on criticality metrics? In: 2023 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Nice, France, 14–16 June 2023 (2023)

    Google Scholar 

  7. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, pp. 1813–1820 (2018). https://doi.org/10.1109/IVS.2018.8500632

  8. De Gelder, E., et al.: Towards an ontology for scenario definition for the assessment of automated vehicles: an object-oriented framework. IEEE Trans. Intell. Veh. 7(2), 300–314 (2022). https://doi.org/10.1109/TIV.2022.3144803

    Article  Google Scholar 

  9. Moers, T., Vater, L., Krajewski, R., Bock, J., Zlocki, A., Eckstein, L.: The exiD dataset: a real-world trajectory dataset of highly interactive highway scenarios in Germany. In: 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, pp. 958–964 (2022). https://doi.org/10.1109/IV51971.2022.9827305

  10. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highd dataset.: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, pp. 2118–2125 (2018)

    Google Scholar 

  11. Urbieta, I., Nieto, M., García, M., Otaegui, O.: Design and implementation of an ontology for semantic labeling and testing: automotive global ontology (AGO). Appl. Sci. 11(17), 7782 (2021). https://doi.org/10.3390/app11177782

    Article  Google Scholar 

  12. Chao, Q., et al.: A survey on visual traffic simulation: models, evaluations, and applications in autonomous driving. Comput. Graph. Forum 39, 287–308 (2020). https://doi.org/10.1111/cgf.13803

    Article  Google Scholar 

  13. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Spain, pp. 982–988 (2015). https://doi.org/10.1109/ITSC.2015.164

  14. Weber, H., et al.: A framework for definition of logical scenarios for safety assurance of automated driving. Traffic Inj. Prev. 20(sup1), S65–S70 (2019). https://doi.org/10.1080/15389588.2019.1630827

    Article  Google Scholar 

  15. Zhang, X., et al.: Finding critical scenarios for automated driving systems: a systematic mapping study. IEEE Trans. Softw. Eng. 49(3), 991–1026 (2023). https://doi.org/10.1109/TSE.2022.3170122

    Article  Google Scholar 

  16. Blache, H., Laharotte, P.A., El Faouzi, N.E.: Evaluation des cas d’usages des véhicules automatisés et connectés: Vers une approche basée sur les scénarios visant à réduire la quantité de tests en simulation ou environnement réel. In 20èmes Rencontres des Jeunes Chercheurs en Intelligence Artificielle (RJCIA), Saint-Etienne, France (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Blache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blache, H., Laharotte, PA., El Faouzi, NE. (2023). Towards an Effective Generation of Functional Scenarios for AVs to Guide Sampling. In: Guiochet, J., Tonetta, S., Schoitsch, E., Roy, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14182. Springer, Cham. https://doi.org/10.1007/978-3-031-40953-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40953-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40952-3

  • Online ISBN: 978-3-031-40953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics