Skip to main content

A Real-World Clinical Data Mining of Post COVID-19 Patients

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2023)

Abstract

Analysis of real-world clinical data, which includes multiple heterogenous categories of attributes, requires a well-designed data-mining process to obtain meaningful information. We explored the application of several data-mining methods on a real-world dataset of patients diagnosed with COVID-19, with emphasis on cohort selection with maximum data availability, and feature selection based on their correlation with clinical data. Two data mining platforms (Orange data-mining platform coupled with LRNet method, and Waikato environment for knowledge analysis) were used for finding important attributes associated with post COVID-19 symptoms from the multiple modalities of this cohort and evaluating the ability of these attributes to separate patients into clusters. We introduced a dynamic method of inclusion and exclusion, as well as outlier selection, which maximized the knowledge extracted from this real-world dataset. We also demonstrated that a comprehensive first-view of this dataset was only possible by applying multiple methods for dimensionality reduction and feature selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Can be accessed at: https://homel.vsb.cz/~kud007/lrnet_files (last accessed 23 June 2023).

References

  1. Chen, J., et al.: The current landscape in biostatistics of real-world data and evidence: clinical study design and analysis. Stat. Biopharm. Res. 15(1), 29–42 (2023). https://doi.org/10.1080/19466315.2021.1883474

    Article  MathSciNet  Google Scholar 

  2. Golestan Hashemi, F.S., et al.: Intelligent mining of large-scale bio-data: Bioinformatics applications. Biotechnol. Biotechnol. Equipment 32(1), 10–29 (2017). https://doi.org/10.1080/13102818.2017.1364977

    Article  Google Scholar 

  3. Yap, T.A., Jacobs, I., Baumfeld Andre, E., Lee, L.J., Beaupre, D., Azoulay, L.: Application of real-world data to external control groups in oncology clinical trial drug development. Fron. Oncol. 11, 695936 (2022). https://doi.org/10.3389/fonc.2021.695936

    Article  Google Scholar 

  4. Zou, K.H., et al.: Harnessing real-world data for regulatory use and applying innovative applications. J. Multidisc. Healthc. 13, 671–679 (2020). https://doi.org/10.2147/JMDH.S262776

    Article  Google Scholar 

  5. Chatterjee, S., Davies, M.J., Khunti, K.: What have we learnt from ‘real world’ data, observational studies and meta-analyses. Diabetes Obes. Metab. 20, 47–58 (2018). https://doi.org/10.1111/dom.13178

    Article  Google Scholar 

  6. Lipkova, J., et al.: Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40(10), 1095–1110 (2022). https://doi.org/10.1016/j.ccell.2022.09.012

    Article  Google Scholar 

  7. Torab-Miandoab, A., Samad-Soltani, T., Jodati, A., Rezaei-Hachesu, P.: Interoperability of heterogeneous health information systems: a systematic literature review. BMC Med. Inform. Decis. Mak. 23(1), 18 (2023). https://doi.org/10.1186/s12911-023-02115-5

    Article  Google Scholar 

  8. Wu, W.-T., et al.: Data mining in clinical big data: the frequently used databases, steps, and methodological models. Military Med. Res. 8(1), 44 (2021). https://doi.org/10.1186/s40779-021-00338-z

    Article  Google Scholar 

  9. Meng, C., Trinh, L., Xu, N., Enouen, J., Liu, Y.: Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset. Sci. Rep. 12(1), 7166 (2022). https://doi.org/10.1038/s41598-022-11012-2

    Article  Google Scholar 

  10. Choi, J.-H., Lee, J.-S.: EmbraceNet: a robust deep learning architecture for multimodal classification. Inform. Fusion 51, 259–270 (2019). https://doi.org/10.1016/j.inffus.2019.02.010

    Article  Google Scholar 

  11. Liu, Y., Liu, L., Guo, Y., Lew, M.S.: Learning visual and textual representations for multimodal matching and classification. Pattern Recogn. 84, 51–67 (2018). https://doi.org/10.1016/j.patcog.2018.07.001

    Article  Google Scholar 

  12. Ramachandram, D., Taylor, G.W.: Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Process. Mag. 34(6), 96–108 (2017). https://doi.org/10.1109/MSP.2017.2738401

    Article  Google Scholar 

  13. Liu, Z., et al.: Multi-omics integration reveals only minor long-term molecular and functional sequelae in immune cells of individuals recovered from COVID-19. Front. Immunol. 13, 838132 (2022). https://doi.org/10.3389/fimmu.2022.838132

    Article  Google Scholar 

  14. Caruana, E.J., Roman, M., Hernández-Sánchez, J., Solli, P.: Longitudinal Studies. J. Thorac. Dis.\ 7(11), E537–E540 (2015). https://doi.org/10.3978/j.issn.2072-1439.2015.10.63

    Article  Google Scholar 

  15. Bartlett, V.L., Dhruva, S.S., Shah, N.D., Ryan, P., Ross, J.S.: Feasibility of using real-world data to replicate clinical trial evidence. JAMA Netw. Open 2(10), e1912869 (2019). https://doi.org/10.1001/jamanetworkopen.2019.12869

    Article  Google Scholar 

  16. Mehandru, S., Merad, M.: Pathological sequelae of long-haul COVID. Nat. Immunol. 23(2), 194–202 (2022). https://doi.org/10.1038/s41590-021-01104-y

    Article  Google Scholar 

  17. Han, Q., Zheng, B., Daines, L., Sheikh, A.: Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on Post-COVID symptoms. Pathogens 11(2), 269 (2022). https://doi.org/10.3390/pathogens11020269

    Article  Google Scholar 

  18. Ruggiero, V., Aquino, R.P., Del Gaudio, P., Campiglia, P., Russo, P.: Post-COVID syndrome: the research progress in the treatment of pulmonary sequelae after COVID-19 Infection. Pharmaceutics 14(6), 1135 (2022). https://doi.org/10.3390/pharmaceutics14061135

    Article  Google Scholar 

  19. Davido, B., Seang, S., Tubiana, R., De Truchis, P.: Post–COVID-19 chronic symptoms: a postinfectious entity? Clin. Microbiol. Infect. 26(11), 1448–1449 (2020). https://doi.org/10.1016/j.cmi.2020.07.028

    Article  Google Scholar 

  20. Al-Aly, Z., Xie, Y.: High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594(7862), 259–264 (2021). https://doi.org/10.1038/s41586-021-03553-9

    Article  Google Scholar 

  21. Torres-Ruiz, J., et al.: Novel clinical and immunological features associated with persistent post-acute sequelae of COVID-19 after six months of follow-up: a pilot study. Infect. Dis. 55(4), 243–254 (2023). https://doi.org/10.1080/23744235.2022.2158217

    Article  Google Scholar 

  22. Stajdohar, M., Demsar, J.: Interactive network exploration with orange. J. Stat. Soft. 53(6), 1–24 (2013). https://doi.org/10.18637/jss.v053.i06

    Article  Google Scholar 

  23. Stekhoven, D.J., Buhlmann, P.: MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012). https://doi.org/10.1093/bioinformatics/btr597

    Article  Google Scholar 

  24. Hong, S., Lynn, H.S.: Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. BMC Med. Res. Methodol. 20(1), 199 (2020). https://doi.org/10.1186/s12874-020-01080-1

    Article  Google Scholar 

  25. Thachil, J., et al.: ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 18(5), 1023–1026 (2020). https://doi.org/10.1111/jth.14810

    Article  Google Scholar 

  26. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html

    MATH  Google Scholar 

  27. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  28. Waskom, M.L.: Seaborn: statistical data visualization. J. Open Source Softw. 6(60), 3021 (2021). https://doi.org/10.21105/joss.03021

    Article  Google Scholar 

  29. Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996). https://doi.org/10.1613/jair.279

    Article  MATH  Google Scholar 

  30. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, in ICML’03, pp. 856–863. AAAI Press, Washington, DC, USA (2003)

    Google Scholar 

  31. Jiménez, F., Sánchez, G., García, J.M., Sciavicco, G., Miralles, L.: Multi-objective evolutionary feature selection for online sales forecasting. Neurocomputing 234, 75–92 (2017). https://doi.org/10.1016/j.neucom.2016.12.045

    Article  Google Scholar 

  32. Ratra, R., Gulia, P., Gill, N.S.: Performance analysis of classification techniques in data mining using WEKA. SSRN J. (2021). https://doi.org/10.2139/ssrn.3879610

  33. Hornik, K., Buchta, C., Zeileis, A.: Open-source machine learning: R meets Weka. Comput Stat 24(2), 225–232 (2009). https://doi.org/10.1007/s00180-008-0119-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Mikulkova, Z., et al.: Deciphering the complex circulating immune cell microenvironment in chronic lymphocytic leukaemia using patient similarity networks. Sci. Rep. 11(1), 322 (2021). https://doi.org/10.1038/s41598-020-79121-4

    Article  Google Scholar 

  35. Ochodkova, E., Zehnalova, S., Kudelka, M.: Graph construction based on local representativeness. In: Cao, Y., Chen, J. (eds.) Computing and Combinatorics COCOON 2017. Lecture Notes in Computer Science LNCS, vol. 10392, pp. 654–665. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_54

    Chapter  Google Scholar 

  36. Sova, M., et al.: Network analysis for uncovering the relationship between host response and clinical factors to virus pathogen: lessons from SARS-CoV-2. Viruses 14(11), 2422 (2022). https://doi.org/10.3390/v14112422

    Article  Google Scholar 

  37. Fernández Villalobos, N.V., et al.: Effect modification of the association between comorbidities and severe course of COVID-19 disease by age of study participants: a systematic review and meta-analysis. Syst. Rev. 10(1), 194 (2021). https://doi.org/10.1186/s13643-021-01732-3

    Article  Google Scholar 

  38. Russell, C.D., Lone, N.I., Kenneth Baillie, J.: Comorbidities, multimorbidity and COVID-19. Nat. Med. 29(2), 334–343 (2023). https://doi.org/10.1038/s41591-022-02156-9

    Article  Google Scholar 

Download references

Acknowledgments

The study was performed in accordance with the ethical standards of the institutional or national research committee and respected the 1964 Helsinki Declaration and its later amendments or comparable relevant ethical standards and was approved by the Institutional Ethics Committee of Palacký University Olomouc and University Hospital Olomouc.

This research was funded by SGS, VSB-Technical University of Ostrava (grant number SP2023/076) and the Ministry of Health of the Czech Republic (grant number NU22-A-105), and in part by IGA-LFUP-2023-010 and FNOL-00098892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kriegova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gharibian, A. et al. (2023). A Real-World Clinical Data Mining of Post COVID-19 Patients. In: Barolli, L. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-031-40971-4_41

Download citation

Publish with us

Policies and ethics