Skip to main content

Detection of Dangerous Driver Health Problems Using HOG-Autoencoder

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2023)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 182))

  • 252 Accesses

Abstract

In this paper, we present a method that can be used to detect unexpected driver health problems (e.g. stroke, heart attack, epileptic or similar types of seizures). Obviously, in such cases, the goal is to obtain the recognition results in the shortest possible time. Therefore, the main contribution of the presented method is the speed combined with satisfactory detection results. To achieve these goals, we use the HOG method for fast image feature extraction in the first step. In the second step, an autoencoder network is used to compress the features. Based on the autoencoder reconstruction error, it is then decided whether the driver’s health condition is normal or abnormal. The results seem to be promising for the possible practical deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006). https://doi.org/10.1109/TPAMI.2006.244

    Article  MATH  Google Scholar 

  2. Alam, N.A., Ahsan, M., Based, M.A., Haider, J., Kowalski, M.: COVID-19 detection from chest x-ray images using feature fusion and deep learning. Sensors 21(4), 1480 (2021). https://doi.org/10.3390/s21041480, https://www.mdpi.com/1424-8220/21/4/1480

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - CVPR 2005, vol. 1, pp. 886-893. IEEE Computer Society, USA (2005). https://doi.org/10.1109/CVPR.2005.177

  4. Duran-Lopez, L., Dominguez-Morales, J.P., Corral-Jaime, J., Vicente Díaz, S., Linares-Barranco, A.: COVID-XNet: a custom deep learning system to diagnose and locate COVID-19 in chest x-ray images. Appl. Sci. 10, 5683 (2020). https://doi.org/10.3390/app10165683

    Article  Google Scholar 

  5. Fusek, R., Sojka, E., Gaura, J., Halman, J.: Driver state detection from in-car camera images. In: Bebis, G., et al. (eds.) ISVC 2022. LNCS, pp. 307–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20716-7_24

    Chapter  Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  7. Ilyas, M.U., Latif, S., Qadir, J.: Using deep autoencoders for facial expression recognition. CoRR abs/1801.08329 (2018). http://arxiv.org/abs/1801.08329

  8. Karuppannan, K., Darmanayagam, S.E., Cyril, S.R.R.: Human action recognition using fusion-based discriminative features and long short term memory classification. Concurrency Comput. Pract. Experience 34(25), e7250 (2022). https://doi.org/10.1002/cpe.7250

    Article  Google Scholar 

  9. Laguarta, J., Hueto, F., Subirana, B.: COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J. Eng. Med. Biol. 1, 275–281 (2020). https://doi.org/10.1109/OJEMB.2020.3026928

    Article  Google Scholar 

  10. Lakshmi, D., Ponnusamy, R.: Facial emotion recognition using modified HOG and LBP features with deep stacked autoencoders. Microprocess. Microsyst. 82, 103834 (2021). https://doi.org/10.1016/j.micpro.2021.103834, https://www.sciencedirect.com/science/article/pii/S0141933121000144

  11. Martin, M., et al.: Drive & act: a multi-modal dataset for fine-grained driver behavior recognition in autonomous vehicles. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  12. Ortega, J.D., et al.: DMD: a large-scale multi-modal driver monitoring dataset for attention and alertness analysis. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 387–405. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_23

    Chapter  Google Scholar 

  13. Pahar, M., Klopper, M., Warren, R., Niesler, T.: COVID-19 cough classification using machine learning and global smartphone recordings. Comput. Biol. Med. 135, 104,572 (2021). https://doi.org/10.1016/j.compbiomed.2021.104572, https://www.sciencedirect.com/science/article/pii/S0010482521003668

  14. Pahar, M., Miranda, I.D.S., Diacon, A.H., Niesler, T.: Automatic non-invasive cough detection based on accelerometer and audio signals. CoRR abs/2109.00103 (2021). https://arxiv.org/abs/2109.00103

  15. Rahman, M., Nooruddin, S., Hasan, K.M., Kumar Dey, N.: HOG + CNN Net: Diagnosing COVID-19 and pneumonia by deep neural network from chest x-ray images. SN Comput. Sci. 2, 1–15 (2021). https://doi.org/10.1007/s42979-021-00762-x

    Article  Google Scholar 

  16. Tan, P.S., Lim, K.M., Lee, C.P.: Human action recognition with sparse autoencoder and histogram of oriented gradients. In: 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), pp. 1–5 (2020). https://doi.org/10.1109/IICAIET49801.2020.9257863

  17. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–I (2001). https://doi.org/10.1109/CVPR.2001.990517

  18. Wang, J., et al.: 100-driver: a large-scale, diverse dataset for distracted driver classification. In: Under Review (2022)

    Google Scholar 

  19. Wang, L., Lin, Z., Wong, A.: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest x-ray images. Sci. Rep. 10, 19549 (2020). https://doi.org/10.1038/s41598-020-76550-z

    Article  Google Scholar 

  20. Wei, C., Fan, H., Xie, S., Wu, C., Yuille, A., Feichtenhofer, C.: Masked feature prediction for self-supervised visual pre-training. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14,648–14,658. IEEE Computer Society, Los Alamitos, CA, USA (2022). https://doi.org/10.1109/CVPR52688.2022.01426. https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01426

  21. Wei, C., Fan, H., Xie, S., Wu, C., Yuille, A.L., Feichtenhofer, C.: Masked feature prediction for self-supervised visual pre-training. CoRR abs/2112.09133 (2021). https://arxiv.org/abs/2112.09133

  22. Yan, C., Coenen, F., Zhang, B.: Driving posture recognition by joint application of motion history image and pyramid histogram of oriented gradients. Int. J. Veh. Technol. 2014, 1–11 (2014). https://doi.org/10.1155/2014/719413

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Grants of SGS No. SP2023/072, VSB - Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Fusek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fusek, R., Halman, J., Sojka, E., Gaura, J. (2023). Detection of Dangerous Driver Health Problems Using HOG-Autoencoder. In: Barolli, L. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-031-40971-4_43

Download citation

Publish with us

Policies and ethics