Skip to main content

A Deep-Learning Approach for Predicting Round Obfuscation in White-Box Block Ciphers

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13907))

Included in the following conference series:

Abstract

It has been proven that side-channel analysis such as differential computation/fault analysis can break white-box implementations without reverse engineering efforts. In 2020, Sun et al. proposed noisy rounds as a countermeasure to mitigate the side-channel attacks on white-box block ciphers. The principle is to desynchronize the computation traces of cryptographic implementations by introducing several redundant round functions. In this paper, we propose a multi-label classification method and three deep-learning models (CNN, RNN, and CRNN) to predict the locations of the obfuscated rounds. The experimental results show that the obfuscation of noisy rounds also could not be identified by the deep-learning model. However, the RNN is more effective than the CNN and CRNN with fewer time costs. Subsequently, we investigate the influence of specific components such as the key, affine masking, and transformation matrix on round obfuscation recognition. The extended experiments demonstrate that without the transformation matrix, the deep learning models can successfully distinguish the noisy rounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of internal encodings - revisiting the DCA attack on white-box cryptography. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 103–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_6

    Chapter  MATH  Google Scholar 

  2. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.B.: Analysis of software countermeasures for whitebox encryption. Cryptology ePrint Archive (2017)

    Google Scholar 

  3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_16

    Chapter  Google Scholar 

  4. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis: hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_11

    Chapter  Google Scholar 

  5. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt. Cryptology ePrint Archive (2006)

    Google Scholar 

  6. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implementation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5_1

    Chapter  Google Scholar 

  7. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_17

    Chapter  MATH  Google Scholar 

  8. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy rounds: fault protection for block ciphers without check-before-output. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 305–321. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_17

    Chapter  Google Scholar 

  9. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0_19

    Chapter  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, Red Hook, NY, USA, vol. 1, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  11. Lee, J.H., Han, D.-G.: DLDDO: deep learning to detect dummy operations. In: You, I. (ed.) WISA 2020. LNCS, vol. 12583, pp. 73–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65299-9_6

    Chapter  Google Scholar 

  12. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_14

    Chapter  Google Scholar 

  13. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. J. Cryptogr. Eng. 5(2), 123–139 (2015). https://doi.org/10.1007/s13389-014-0089-3

    Article  Google Scholar 

  14. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  15. Muir, J.A.: A tutorial on white-box AES. In: Kranakis, E. (ed.) Advances in Network Analysis and Its Applications. MATHINDUSTRY, vol. 18, pp. 209–229. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30904-5_9

    Chapter  Google Scholar 

  16. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_3

    Chapter  Google Scholar 

  17. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8_21

    Chapter  Google Scholar 

  18. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  19. Rivain, M., Wang, J.: Analysis and improvement of differential computation attacks against internally-encoded white-box implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 225–255 (2019)

    Article  Google Scholar 

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  21. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. CoRR abs/1507.05717 (2015). http://arxiv.org/abs/1507.05717

  22. Sun, T., Tang, G., Wu, X., Mao, Z., Gong, Z.: A noisyrounds-based white-box AES implementation and corresponding differential fault analysis. J. Cryptol. Res. 7(3), 342–57 (2020)

    Google Scholar 

  23. Tang, Y., Gong, Z., Sun, T., Chen, J., Liu, Z.: WBMatrix: an optimized matrix library for white-box block cipher implementations. IEEE Trans. Comput. 71(12), 3375–88 (2022)

    Google Scholar 

  24. Tingting, L., Xuejia, L.: Efficient attack to white-box SMS4 implementation. J. Softw. 24(9), 2238–2249 (2013)

    MathSciNet  Google Scholar 

  25. Wu, L., Picek, S.: Remove some noise: on pre-processing of side-channel measurements with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 389–415 (2020)

    Article  Google Scholar 

  26. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd International Conference on Computer Science and Its Applications, pp. 1–6. IEEE (2009)

    Google Scholar 

  27. Xiao, Y., Lai, X.: White-box cryptography and implementations of SMS4. In: Proceedings of the 2009 CACR Annual Meeting, Guangzhou, China, pp. 24–34 (2009)

    Google Scholar 

  28. Yueyu, Z., Dong, X., Jie, C.: Analysis and improvement of white box SM4. J. Electron. Inf. Technol. 43, 1–11 (2021)

    Google Scholar 

  29. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 1–36 (2020)

    Google Scholar 

  30. Zeyad, M., Maghrebi, H., Alessio, D., Batteux, B.: Another look on bucketing attack to defeat white-box implementations. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 99–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_7

    Chapter  Google Scholar 

  31. Zhang, Y., Xu, D., Cai, Z., Chen, J.: Analysis of the mean difference of intermediate-values in a white box SM4. J. Xidian Univ. 49(1), 111–120 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (62072192), National Defense Technology 173 Basic Improvement Project (2121-JCJQ-JJ-0931), National Cryptography Development Fund (MMJJ20180206), Guangdong Basic and Applied Basic Research Foundation (2022A1515140090), the Research Project of Science and Technology Plan of Guangzhou (No. 2023B 03J0172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, T. et al. (2023). A Deep-Learning Approach for Predicting Round Obfuscation in White-Box Block Ciphers. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2023. Lecture Notes in Computer Science, vol 13907. Springer, Cham. https://doi.org/10.1007/978-3-031-41181-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41181-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41180-9

  • Online ISBN: 978-3-031-41181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics