Abstract
Non-fungible tokens (NFTs) are digital representations of assets stored on a blockchain. It allows content creators to certify authenticity of their digital assets and transfer ownership in a transparent and decentralized way. Popular choices of NFT marketplaces infrastructure include blockchains with smart contract functionality or layer-2 solutions. Surprisingly, researchers have largely avoided building NFT schemes over Bitcoin-like blockchains, most likely due to high transaction fees in the BTC network and the belief that Bitcoin lacks enough programmability to implement fair exchanges. In this work we fill this gap. We propose an NFT scheme where trades are settled in a single Bitcoin transaction as opposed to executing complex smart contracts. We use zero-knowledge proofs (concretely, recursive SNARKs) to prove that two Bitcoin transactions, the issuance transaction \(\textsf{tx}_0\) and the current trade transaction \(\textsf{tx}_n\), are linked through a unique chain of transactions. Indeed, these proofs function as “off-chain receipts” of ownership that can be transferred from the current owner to the new owner using an insecure channel. The size of the proof receipt is short, independent of the total current number of trades n, and can be updated incrementally by anyone at anytime. Marketplaces typically require some degree of token ownership delegation, e.g., escrow accounts, to execute the trade between sellers and buyers that are not online concurrently, and to alleviate transaction fees they resort to off-chain trades. This raises concerns on the transparency and purportedly honest behaviour of marketplaces. We achieve fair and non-custodial trades by leveraging our off-chain receipts and letting the involved parties carefully sign the trade transaction with appropriate combinations of \(\texttt {sighash}\) flags.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arkworks zksnark ecosystem (2023). https://arkworks.rs
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_16
Besançon, L., Da Silva, C.F., Ghodous, P., Gelas, J.P.: A blockchain ontology for DApps development. IEEE Access 10, 49905–49933 (2022)
Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A., Tromer, E.: The hunting of the SNARK. IACR Cryptol. ePrint Arch. (2014)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: STOC. ACM (2013)
Bitcoin SV Wiki. https://wiki.bitcoinsv.io/index.php/SIGHASH_flags
Blancaflor, E., Aladin, K.: Analysis of the NFT’s potential impact in an e-commerce platform: a systematic review. In: Proceedings of the 10th International Conference on Computer and Communications Management. ACM (2022)
Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: proof-carrying data from additive polynomial commitments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 649–680. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_23
Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency at scale. IACR Cryptology ePrint Archive (2020)
Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without a trusted setup. IACR Cryptology ePrint Archive (2019)
Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumulation schemes. IACR Cryptol. ePrint Arch. (2020)
Chaparala, H.K., Doddala, S.V., Showail, A., Singh, A., Gazzaz, S., Nawab, F.: Liftchain: a scalable multi-stage NFT transaction protocol. In: 2022 IEEE International Conference on Blockchain (Blockchain) (2022)
Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs via incremental verification for ledger systems. IACR Cryptology ePrint Archive (2020)
Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: Innovations in Computer Science - ICS. Proceedings. Tsinghua University Press (2010)
Das, D., Bose, P., Ruaro, N., Kruegel, C., Vigna, G.: Understanding security issues in the NFT ecosystem. CoRR (2021)
Entriken, W., Shirley, D., Evans, J., Sachs, N.: ERC-721: non-fungible token standard. EIP (2018). https://eips.ethereum.org/EIPS/eip-721
Ordinal inscription (2023). https://ordinals.com/
Fowler, A., Pirker, J.: Tokenfication - the potential of non-fungible tokens (NFT) for game development. In: Annual Symposium on Computer-Human Interaction in Play. ACM (2021)
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Guo, H., Chen, M., Ou, W.: A lightweight NFT auction protocol for cross-chain environment. In: Xu, Y., Yan, H., Teng, H., Cai, J., Li, J. (eds.) ML4CS 2022. LNCS, vol. 13655, pp. 133–146. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-20096-0_11
Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with fairness guarantees. IACR Cryptology ePrint Archive (2020)
Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 359–389. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_13
Marlinspike, M.: My first impressions of web3 (2022). https://moxie.org/2022/01/07/web3-first-impressions.html
Miyaji, A., Nakabayashi, M., Nonmembers, S.: New explicit conditions of elliptic curve traces for FR- reduction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 84, 1234–1243 (2001)
O(1) Labs: Mina cryptocurrency (2017). https://minaprotocol.com
Ordinal theory handobbok (2023). https://docs.ordinals.com/
Park, A., Kietzmann, J., Pitt, L., Dabirian, A.: The evolution of nonfungible tokens: complexity and novelty of NFT use-cases. IT Prof. 24, 9–14 (2022)
Park, S., et al.: Beyond the blockchain address: zero-knowledge address abstraction. Cryptology ePrint Archive (2023)
Radomski, W., Cooke, A., Castonguay, P., Therien, J., Binet, E., Sandford, R.: ERC-1155: multi token standard. EIP (2018). https://eips.ethereum.org/EIPS/eip-1155
Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1
Vasan, K., Janosov, M., Barabási, A.L.: Quantifying NFT-driven networks in crypto art. Sci. Rep. 12, 2769 (2022)
Wang, Q., Li, R., Wang, Q., Chen, S.: Non-fungible token (NFT): overview, evaluation, opportunities and challenges. CoRR (2021)
Wu, B., Wu, B.: NFT: Crypto As Collectibles. Apress (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kiraz, M.S., Larraia, E., Vaughan, O. (2023). NFT Trades in Bitcoin with Off-Chain Receipts. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2023. Lecture Notes in Computer Science, vol 13907. Springer, Cham. https://doi.org/10.1007/978-3-031-41181-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-41181-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41180-9
Online ISBN: 978-3-031-41181-6
eBook Packages: Computer ScienceComputer Science (R0)