Skip to main content

NFT Trades in Bitcoin with Off-Chain Receipts

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13907))

Included in the following conference series:

Abstract

Non-fungible tokens (NFTs) are digital representations of assets stored on a blockchain. It allows content creators to certify authenticity of their digital assets and transfer ownership in a transparent and decentralized way. Popular choices of NFT marketplaces infrastructure include blockchains with smart contract functionality or layer-2 solutions. Surprisingly, researchers have largely avoided building NFT schemes over Bitcoin-like blockchains, most likely due to high transaction fees in the BTC network and the belief that Bitcoin lacks enough programmability to implement fair exchanges. In this work we fill this gap. We propose an NFT scheme where trades are settled in a single Bitcoin transaction as opposed to executing complex smart contracts. We use zero-knowledge proofs (concretely, recursive SNARKs) to prove that two Bitcoin transactions, the issuance transaction \(\textsf{tx}_0\) and the current trade transaction \(\textsf{tx}_n\), are linked through a unique chain of transactions. Indeed, these proofs function as “off-chain receipts” of ownership that can be transferred from the current owner to the new owner using an insecure channel. The size of the proof receipt is short, independent of the total current number of trades n, and can be updated incrementally by anyone at anytime. Marketplaces typically require some degree of token ownership delegation, e.g., escrow accounts, to execute the trade between sellers and buyers that are not online concurrently, and to alleviate transaction fees they resort to off-chain trades. This raises concerns on the transparency and purportedly honest behaviour of marketplaces. We achieve fair and non-custodial trades by leveraging our off-chain receipts and letting the involved parties carefully sign the trade transaction with appropriate combinations of \(\texttt {sighash}\) flags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkworks zksnark ecosystem (2023). https://arkworks.rs

  2. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_16

    Chapter  Google Scholar 

  3. Besançon, L., Da Silva, C.F., Ghodous, P., Gelas, J.P.: A blockchain ontology for DApps development. IEEE Access 10, 49905–49933 (2022)

    Article  Google Scholar 

  4. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A., Tromer, E.: The hunting of the SNARK. IACR Cryptol. ePrint Arch. (2014)

    Google Scholar 

  5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: STOC. ACM (2013)

    Google Scholar 

  6. Bitcoin SV Wiki. https://wiki.bitcoinsv.io/index.php/SIGHASH_flags

  7. Blancaflor, E., Aladin, K.: Analysis of the NFT’s potential impact in an e-commerce platform: a systematic review. In: Proceedings of the 10th International Conference on Computer and Communications Management. ACM (2022)

    Google Scholar 

  8. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: proof-carrying data from additive polynomial commitments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 649–680. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_23

    Chapter  Google Scholar 

  9. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency at scale. IACR Cryptology ePrint Archive (2020)

    Google Scholar 

  10. Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without a trusted setup. IACR Cryptology ePrint Archive (2019)

    Google Scholar 

  11. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumulation schemes. IACR Cryptol. ePrint Arch. (2020)

    Google Scholar 

  12. Chaparala, H.K., Doddala, S.V., Showail, A., Singh, A., Gazzaz, S., Nawab, F.: Liftchain: a scalable multi-stage NFT transaction protocol. In: 2022 IEEE International Conference on Blockchain (Blockchain) (2022)

    Google Scholar 

  13. Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs via incremental verification for ledger systems. IACR Cryptology ePrint Archive (2020)

    Google Scholar 

  14. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: Innovations in Computer Science - ICS. Proceedings. Tsinghua University Press (2010)

    Google Scholar 

  15. Das, D., Bose, P., Ruaro, N., Kruegel, C., Vigna, G.: Understanding security issues in the NFT ecosystem. CoRR (2021)

    Google Scholar 

  16. Entriken, W., Shirley, D., Evans, J., Sachs, N.: ERC-721: non-fungible token standard. EIP (2018). https://eips.ethereum.org/EIPS/eip-721

  17. Ordinal inscription (2023). https://ordinals.com/

  18. Fowler, A., Pirker, J.: Tokenfication - the potential of non-fungible tokens (NFT) for game development. In: Annual Symposium on Computer-Human Interaction in Play. ACM (2021)

    Google Scholar 

  19. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  20. Guo, H., Chen, M., Ou, W.: A lightweight NFT auction protocol for cross-chain environment. In: Xu, Y., Yan, H., Teng, H., Cai, J., Li, J. (eds.) ML4CS 2022. LNCS, vol. 13655, pp. 133–146. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-20096-0_11

    Chapter  Google Scholar 

  21. Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with fairness guarantees. IACR Cryptology ePrint Archive (2020)

    Google Scholar 

  22. Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 359–389. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_13

    Chapter  Google Scholar 

  23. Marlinspike, M.: My first impressions of web3 (2022). https://moxie.org/2022/01/07/web3-first-impressions.html

  24. Miyaji, A., Nakabayashi, M., Nonmembers, S.: New explicit conditions of elliptic curve traces for FR- reduction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 84, 1234–1243 (2001)

    Google Scholar 

  25. O(1) Labs: Mina cryptocurrency (2017). https://minaprotocol.com

  26. Ordinal theory handobbok (2023). https://docs.ordinals.com/

  27. Park, A., Kietzmann, J., Pitt, L., Dabirian, A.: The evolution of nonfungible tokens: complexity and novelty of NFT use-cases. IT Prof. 24, 9–14 (2022)

    Article  Google Scholar 

  28. Park, S., et al.: Beyond the blockchain address: zero-knowledge address abstraction. Cryptology ePrint Archive (2023)

    Google Scholar 

  29. Radomski, W., Cooke, A., Castonguay, P., Therien, J., Binet, E., Sandford, R.: ERC-1155: multi token standard. EIP (2018). https://eips.ethereum.org/EIPS/eip-1155

  30. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1

    Chapter  MATH  Google Scholar 

  31. Vasan, K., Janosov, M., Barabási, A.L.: Quantifying NFT-driven networks in crypto art. Sci. Rep. 12, 2769 (2022)

    Article  Google Scholar 

  32. Wang, Q., Li, R., Wang, Q., Chen, S.: Non-fungible token (NFT): overview, evaluation, opportunities and challenges. CoRR (2021)

    Google Scholar 

  33. Wu, B., Wu, B.: NFT: Crypto As Collectibles. Apress (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Larraia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiraz, M.S., Larraia, E., Vaughan, O. (2023). NFT Trades in Bitcoin with Off-Chain Receipts. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2023. Lecture Notes in Computer Science, vol 13907. Springer, Cham. https://doi.org/10.1007/978-3-031-41181-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41181-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41180-9

  • Online ISBN: 978-3-031-41181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics