Skip to main content

TENET: Sublogarithmic Proof and Sublinear Verifier Inner Product Argument without a Trusted Setup

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14128))

Included in the following conference series:

  • 270 Accesses

Abstract

We propose a new inner product argument (IPA), called TENET, which features sublogarithmic proof size and sublinear verifier without a trusted setup. IPA is a core primitive for various advanced proof systems including range proofs, circuit satisfiability, and polynomial commitment, particularly where a trusted setup is hard to apply. At ASIACRYPT 2022, Kim, Lee, and Seo showed that pairings can be utilized to exceed the complexity barrier of the previous discrete logarithm-based IPA without a trusted setup. More precisely, they proposed two pairing-based IPAs, one with sublogarithmic proof size and the other one with sublinear verifier cost, but they left achieving both complexities simultaneously as an open problem. We investigate the obstacles for this open problem and then provide our solution TENET, which achieves both sublogarithmic proof size and sublinear verifier. We prove the soundness of TENET under the discrete logarithm assumption and double pairing assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To the best of our knowledge, [7] is the oldest reference introducing DLR. Although the DLR is widely used due to the equivalence to the DL, we could not find the original reference that firstly proved the equivalence. Instead, we provide a recent reference [20] for the proof of the equivalence between the DLR and the DL.

  2. 2.

    The complexity for computing \({\boldsymbol{v}}'_\ell \) is \(O(ndR^2)\). However, in \(\textsf{TENET}\), the prover sets \({\boldsymbol{v}}_{s,\ell }=\textbf{1}\) for all distinct \(s,\ell \). For this reason, the exponentiation of the redundant terms can be omitted.

  3. 3.

    Once \({\boldsymbol{v}}_s\) and \({\boldsymbol{w}}_s\) are constructed, the extractor extracts the witness using them. In the extract process, the extractor does not decompose \({\boldsymbol{v}}_s\) to multi-\({\boldsymbol{v}}[i,j]\). That is, it does not affect soundness to substitute sending \({\boldsymbol{v}}\in {\mathbb {G}}_1^{n\times 2d(2d-1)}\) with \(\bar{\boldsymbol{v}}\in {\mathbb {G}}_1^{4d-2}\) in Sect. 3.3.

References

  1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–421 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arun, A., Ganesh, C., Lokam, S.V., Mopuri, T., Sridhar, S.: Dew: transparent constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419 (2022). https://eprint.iacr.org/2022/419.pdf

  3. Attema, T., Cramer, R., Kohl, L.: A compressed \(\sigma \)-protocol theory for lattices. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 549–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_19

  4. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

    Chapter  Google Scholar 

  5. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  6. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted setup (2019). https://eprint.iacr.org/2019/1021

  7. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_26

    Chapter  MATH  Google Scholar 

  8. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: IEEE Symposium on Security and Privacy 2018, pp. 315–334. IEEE (2018)

    Google Scholar 

  9. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

    Chapter  Google Scholar 

  10. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_3

    Chapter  Google Scholar 

  11. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  12. Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: shorter proofs for a privacy-enhanced distributed ledger. IEEE Access 10, 42067–42082 (2022)

    Article  Google Scholar 

  13. Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with logarithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 527–557. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_18

    Chapter  Google Scholar 

  14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  15. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953.pdf.

  16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_12

    Chapter  Google Scholar 

  18. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  19. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

    Chapter  Google Scholar 

  20. Kim, S., Lee, H., Seo, J.H.: Efficient zero-knowledge arguments in discrete logarithm setting: sublogarithmic proof or sublinear verifier. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 403–433. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22966-4_14

  21. Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilinear group arithmetic: practical structure-preserving cryptography. In: ACM CCS 2019, pp. 2057–2074 (2019)

    Google Scholar 

  22. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_1

    Chapter  Google Scholar 

  23. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks from linear-size universal and updatable structured reference strings. In: ACM CCS 2019, pp. 2111–2128. Association for Computing Machinery (2019)

    Google Scholar 

  24. Seo, J.H.: Round-efficient sub-linear zero-knowledge arguments for linear algebra. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 387–402. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_24

    Chapter  Google Scholar 

  25. Seo, J.H.: Short round sub-linear zero-knowledge argument for linear algebraic relations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(4), 776–789 (2012)

    Google Scholar 

  26. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: IEEE Symposium on Security and Privacy 2018, pp. 926–943. IEEE (2018)

    Google Scholar 

  27. Zhou, Z., Zhang, Z., Tao, H., Li, T., Zhao, B.: Efficient inner product arguments and their applications in range proofs. IET Inf. Secur. 17, 485–504 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by the Korea Government (MSIT) (A Study on Cryptographic Primitives for SNARK, under Grant 20210007270012002.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hong Seo .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Proof of Theorem 1

Proof

(completeness) If \(m=1\), completeness holds by perfect completeness of \(\mathsf {BP_{IP}}\). Consider the case \(m>1\).

$$\begin{aligned} \begin{aligned} P'&=P\cdot \nu \cdot e(\mu ,U)=P\cdot {\boldsymbol{E}}(\widehat{{{\boldsymbol{v}}}^{{\boldsymbol{x}}}},{\boldsymbol{H}})\cdot e({\boldsymbol{w}}^{{\boldsymbol{x}}},U)\\&={\boldsymbol{E}}(\overrightarrow{{{\boldsymbol{g}}}^{{\boldsymbol{a}}}} \circ \overrightarrow{{{\boldsymbol{h}}}^{{\boldsymbol{b}}}},{\boldsymbol{H}}) \cdot e(u,U)^{\langle {\boldsymbol{a}},{\boldsymbol{b}}\rangle }\cdot {\boldsymbol{E}}(\widehat{{{\boldsymbol{v}}}^{{\boldsymbol{x}}}},{\boldsymbol{H}})\cdot e({\boldsymbol{w}}^{{\boldsymbol{x}}} ,U)\\&={\boldsymbol{E}}(\overrightarrow{{{\boldsymbol{g}}}^{{\boldsymbol{a}}}}\circ \overrightarrow{{{\boldsymbol{h}}}^{{\boldsymbol{b}}}}\circ \widehat{{{\boldsymbol{v}}}^{{\boldsymbol{x}}}},{\boldsymbol{H}})\cdot e(u^{\langle {\boldsymbol{a}},{\boldsymbol{b}}\rangle }\cdot {\boldsymbol{w}}^{{\boldsymbol{x}}},U)\\ \end{aligned} \end{aligned}$$

Now, we claim that \(\overrightarrow{{{\boldsymbol{g}}}^{{\boldsymbol{a}}}}\circ \overrightarrow{{{\boldsymbol{h}}}^{{\boldsymbol{b}}}}\circ \widehat{{{\boldsymbol{v}}}^{{\boldsymbol{x}}}}=\overrightarrow{{{\boldsymbol{g}}'}^{{\boldsymbol{a}}'}}\circ \overrightarrow{{{\boldsymbol{h}}'}^{{\boldsymbol{b}}'}}\) and \(u^{\langle {\boldsymbol{a}},{\boldsymbol{b}}\rangle }\cdot {\boldsymbol{w}}^{{\boldsymbol{x}}}=u^{\langle {\boldsymbol{a}}',{\boldsymbol{b}}' \rangle }\). From the prover’s computation, we achieve the following equations:

$$\begin{aligned} \overrightarrow{{{\boldsymbol{g}}}^{{\boldsymbol{a}}}}\circ \overrightarrow{{{\boldsymbol{h}}}^{{\boldsymbol{b}}}}\circ \widehat{{{\boldsymbol{v}}}^{{\boldsymbol{x}}}}&=\big (\circ _{i\in I_d}\overrightarrow{{{\boldsymbol{g}}_i}^{{\boldsymbol{a}}_i}}\circ \overrightarrow{{{\boldsymbol{h}}_i}^{{\boldsymbol{b}}_i}}\big )\circ \big (\circ _{i,j\in I_d\wedge i\ne j}(\overrightarrow{{{\boldsymbol{g}}_i}^{{\boldsymbol{a}}_j}}\circ \overrightarrow{{{\boldsymbol{h}}_j}^{{\boldsymbol{b}}_i}})^{x^{j-i}}\big )\\&=\circ _{i,j\in I_d}(\overrightarrow{{{\boldsymbol{g}}_i}^{{\boldsymbol{a}}_j}}\circ \overrightarrow{{{\boldsymbol{h}}_j}^{{\boldsymbol{b}}_i}})^{x^{j-i}}\\&=\overrightarrow{{\big (\circ _{i\in I_d}{\boldsymbol{g}}_i^{x^{-i}}\big )}^{(\sum _{j\in I_d} x^j{\boldsymbol{a}}_j)}}\circ \overrightarrow{{\big (\circ _{j\in I_d}{\boldsymbol{h}}_j^{x^j}\big )}^{(\sum _{i\in I_d}x^{-i}{\boldsymbol{b}}_i)}}\\&=\overrightarrow{{{\boldsymbol{g}}'}^{{\boldsymbol{a}}'}}\circ \overrightarrow{{{\boldsymbol{h}}'}^{{\boldsymbol{b}}'}} \end{aligned}$$
$$\begin{aligned} u^{\langle {\boldsymbol{a}},{\boldsymbol{b}}\rangle }\cdot {\boldsymbol{w}}^{{\boldsymbol{x}}}&=\prod _{i\in I_d}{u}^{\langle {\boldsymbol{a}}_i, {\boldsymbol{b}}_i \rangle } \cdot \prod _{i,j\in I_d\wedge i\ne j}{u}^{\langle {\boldsymbol{a}}_j x^j,{\boldsymbol{b}}_i x^{-i} \rangle }=\prod _{i,j\in I_d}{u}^{\langle {\boldsymbol{a}}_j x^j,{\boldsymbol{b}}_i x^{-i} \rangle }\\&=u^{\langle {\sum _{j\in I_d} {\boldsymbol{a}}_j x^j}, {\sum _{i\in I_d} {\boldsymbol{b}}_i x^{-i}}\rangle }=u^{\langle {{\boldsymbol{a}}'}, {{\boldsymbol{b}}'} \rangle } \end{aligned}$$

From the equation \(P'={\boldsymbol{E}}(\overrightarrow{{{\boldsymbol{g}}'}^{{{\boldsymbol{a}}}'}}\circ \overrightarrow{{{\boldsymbol{h}}'}^{{{\boldsymbol{b}}}'}},{\boldsymbol{H}})\cdot e(u,U)^{\langle {{\boldsymbol{a}}'}, {{\boldsymbol{b}}'} \rangle }\), the updated instance-witness pair \(({\boldsymbol{g}}',{\boldsymbol{h}}',{\boldsymbol{H}},u,U,P';{\boldsymbol{a}}',{\boldsymbol{b}}')\) belongs to the relation \(\mathcal R\)

(witness extended emulation) In order to show the computational witness extended emulation, we construct an expected polynomial time extractor whose goal is to extract the witness using a polynomially bounded tree of accepting transcripts. If so, we can apply the general forking lemma [5].

The case \((m=1)\) is clear because \(\mathsf {BP_{IP}}\) has witness extended emulation [8]. Let us focus on the case \((m>1)\). We prove that, for each recursive step on input \(({\boldsymbol{g}}, {\boldsymbol{h}},{\boldsymbol{H}}, u,U,P)\), we can efficiently extract from the prover witness vectors \({\boldsymbol{a}}\) and \({\boldsymbol{b}}\) under the DLR assumption, whose instance is the CRS \({\boldsymbol{g}}\parallel {\boldsymbol{h}}\parallel u\) on \({\mathbb {G}}_1\) and \({\boldsymbol{H}}\parallel u\) on \({\mathbb {G}}_2\). First, the extractor runs the prover to obtain \({\boldsymbol{v}}\in {\mathbb {G}}_1^{n\times {2d(2d-1)}}\) and \({\boldsymbol{w}}\in {\mathbb {G}}_1^{2d(2d-1)}\). At this point, the extractor rewinds the prover \(12d-5\) times and feeds \(12d-5\) non-zero challenges \(x_t\) such that all \(x_t^2\) are distinct. Then, the extractor obtains \(12d-5\) pairs \({\boldsymbol{a}}'_t\) and \({\boldsymbol{b}}'_t \) such that for \(t\in [12d-5]\),

$$\begin{aligned} \begin{aligned} P\cdot \prod _{s\in J_d} \left( {\boldsymbol{E}}({\boldsymbol{v}}_s,{\boldsymbol{H}}) e(w_s,U)\right) ^{x_t^s}=P'_t ={\boldsymbol{E}}\left( \underset{i\in I_d}{\bigcirc }\overrightarrow{{\big ({\boldsymbol{g}}_i^{x_t^{-i}}\big )}^{{\boldsymbol{a}}_t'}}\circ \overrightarrow{{\big ({\boldsymbol{h}}_i^{x_t^{i}}\big )}^{{\boldsymbol{b}}_t'}},{\boldsymbol{H}}\right) e\left( u^{\langle {\boldsymbol{a}}'_t, {\boldsymbol{b}}'_t\rangle },U\right) \end{aligned} \end{aligned}$$
(1)

where \(\underset{j-i=s}{\bigcirc }{\boldsymbol{v}}[i,j]={\boldsymbol{v}}_s\in {\mathbb {G}}_1^n, \underset{j-i=s}{\bigcirc }w[i,j]=w_s\in {\mathbb {G}}_1\).Footnote 3

The left-hand side (LHS) of Eq. (1) has exponentiation of \(x_t\), and its degree takes even integers between \(-4n+2\) and \(4n-2\). Our \(4n+1\) distinct challenges \(x_t\) determine P. Then, the extractor can compute \({\boldsymbol{v}}_P,w_P\) such that \(P={\boldsymbol{E}}({\boldsymbol{v}}_P,{\boldsymbol{H}})e(w_P,U)\). By q-pairing assumption whose instance is the CRS \({\boldsymbol{H}}\parallel U\) on \({\mathbb {G}}_2\), we can separate the \({\boldsymbol{H}}\) and U terms. Then, we obtain two equations:

(2)
(3)

for all \(t\in [12d-5]\).

The extractor knows all the exponents \(x_t^{j-i},x_t^{-i}, x_t^j, {\boldsymbol{a}}'_t\), and \({\boldsymbol{b}}'_t\) in Eq. (2) from \(4d-2\) distinct challenges. There are \(4d-1\) distinct powers of \(x_t^2\) in the LHS in Eq. (2). Thus, by using the inverse matrix of M and elementary linear algebra in the public exponents of the first \(4d-1\) equalities in Eq. (2), the extractor can find the exponent matrices \(\{ {\boldsymbol{a}}_{P,r}, {\boldsymbol{b}}_{P,r} \}_{r\in I_d}\) and \(\{ {\boldsymbol{a}}_{s,r}, {\boldsymbol{b}}_{s,r}\}_{r\in I_d}\) for \(s\in J_d\) satisfying

$$\begin{aligned} {\boldsymbol{v}}_P=\underset{r\in I_d}{\bigcirc }\overrightarrow{{{\boldsymbol{g}}_r}^{{\boldsymbol{a}}_{P,r}}}\circ \overrightarrow{{{\boldsymbol{h}}_r}^{{\boldsymbol{b}}_{P,r}}},\quad {\boldsymbol{v}}_s=\underset{r\in I_d}{\bigcirc }\overrightarrow{{{\boldsymbol{g}}_r}^{{\boldsymbol{a}}_{s,r}}}\circ \overrightarrow{{{\boldsymbol{h}}_r}^{{\boldsymbol{b}}_{s,r}}} \end{aligned}$$
(4)

We claim that concatenation of submatrices \({\boldsymbol{a}}_{P,r},{\boldsymbol{b}}_{P,r}\in \mathbb {Z}_p^{m'\times n}\) are valid witnesses.

Combine Eq. (4) with Eq. (2):

$$\begin{aligned} \begin{aligned} {\boldsymbol{v}}_P\circ \big (\underset{s\in J_d}{\bigcirc }{\boldsymbol{v}}_s^{x_t^s}\big )&=\underset{r\in I_d}{\bigcirc } \overrightarrow{{{\boldsymbol{g}}_r}^{{\boldsymbol{a}}_{P,r}}}\circ \overrightarrow{{{\boldsymbol{h}}_r}^{{\boldsymbol{b}}_{P,r}}}\circ (\underset{s\in J_d}{\bigcirc }\overrightarrow{{{\boldsymbol{g}}_r}^{{\boldsymbol{a}}_{s,r}}}\circ \overrightarrow{{{\boldsymbol{h}}_r}^{{\boldsymbol{b}}_{s,r}}})^{x_t^s}\\&=\underset{r\in I_d}{\bigcirc } \overrightarrow{{{\boldsymbol{g}}_r}^{{\boldsymbol{a}}_{P,r}+{\sum _{s\in J_d}{\boldsymbol{a}}_{s,r}x_t^s}}}\circ \overrightarrow{{{\boldsymbol{h}}_r}^{{{\boldsymbol{b}}_{P,r}+{\sum _{s\in J_d}{\boldsymbol{b}}_{s,r}}x_t^s}}}\\&=\underset{r\in I_d}{\bigcirc } \overrightarrow{{{\boldsymbol{g}}_r}^{{\boldsymbol{a}}_t^{\prime }x_t^{-r}}}\circ \overrightarrow{{{\boldsymbol{h}}_r}^{{\boldsymbol{b}}_t^{\prime }x_t^{r}}} \end{aligned} \end{aligned}$$
(5)

By discrete logarithm relation assumption, we can separate exponents. For all \(t\in [12d-5]\) and \(r\in I_d\), we obtain

(6)
(7)

Let both Eq. (6) and Eq. (7) be multiplied by \(x_t^r\) and \(x_t^{-r}\) respectively. Then, both equations have degrees of \(x_t\) range between \(6d-3\) and \(-6d+3\) according to \(r\in I_d\) and \(s\in J_d\), and it holds for all \(t\in [12d-5]\). \(12d-5\) distinct challenges \(\{x_t\}\) determine polynomials \(f, g:\mathbb {Z}_p\rightarrow \mathbb {Z}_p^{m\times n}\) satisfying the following equations:

$$\begin{aligned} {\boldsymbol{a}}_{P,r}X^r+\sum _{s\in J_d}{\boldsymbol{a}}_{s,r}X^{s+r}=f(X),\quad {\boldsymbol{b}}_{P,r}X^{-r}+\sum _{s\in J_d}{\boldsymbol{b}}_{s,r}X^{s-r}=g(X) \end{aligned}$$
(8)

for all \(r\in I_d\). Notice that the RHSs of Eq. (8) do not depend on the choice of r. Since the possible value of r is between \(-2d+1\) and \(r=2d-1\), the polynomials f(X) and g(X) take degrees between \(-2d+1\) and \(2d-1\). Then, we obtain the following equations:

$$\begin{aligned} {\boldsymbol{a}}'_t=\sum _{r\in I_d}{\boldsymbol{a}}_{P,r}x_t^r,\quad {\boldsymbol{b}}'_t=\sum _{r\in I_d}{\boldsymbol{b}}_{P,r}x_t^{-r} \end{aligned}$$
(9)

In a similar way to obtain exponent vectors \({\boldsymbol{a}}_{P,r}\) \({\boldsymbol{b}}_{P,r}\), the extractor can obtain exponents \(c_P,c_s\in \mathbb {Z}_p\) such that \(w_P=u^{c_P}\) and \(w_s=u^{c_s}\). In the RHS in Eq. (2), let us put the results of Eq. (9). Then, we obtain the following equation:

$$\begin{aligned} u^{c_P}\cdot \prod _{s\in J_d}u^{c_sx_t^s}=u^{\langle {\boldsymbol{a}}'_t,{\boldsymbol{b}}'_t\rangle }=\prod _{i,j\in I_d}u^{\sum _{i,j\in I_d}\langle {\boldsymbol{a}}_{P,j},{\boldsymbol{b}}_{P,i}\rangle x_t^{j-i} } \end{aligned}$$
(10)

The exponents equation \(c_P+\sum _{s\in J_d}c_sx_t^s=\sum _{i,j\in I_d}\langle {\boldsymbol{a}}_{P,j},{\boldsymbol{b}}_{P,i}\rangle x_t^{j-i}\) holds by DLR assumption. The \(8n-3\) distinct values determine the coefficient of the equation. Therefore, the emulator extracts valid witness \({\boldsymbol{a}}_P,{\boldsymbol{b}}_P\), which satisfies \(c_P=\sum _{i\in I_d}\langle {\boldsymbol{a}}_{P,i},{\boldsymbol{b}}_{P,i}\rangle =\langle {\boldsymbol{a}}_P, {\boldsymbol{b}}_P \rangle \).   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H., Seo, J.H. (2023). TENET: Sublogarithmic Proof and Sublinear Verifier Inner Product Argument without a Trusted Setup. In: Shikata, J., Kuzuno, H. (eds) Advances in Information and Computer Security. IWSEC 2023. Lecture Notes in Computer Science, vol 14128. Springer, Cham. https://doi.org/10.1007/978-3-031-41326-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41326-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41325-4

  • Online ISBN: 978-3-031-41326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics