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Abstract Static analysis tools need information about the ISA and the
boundaries of the code and data sections of the binary they analyze. This
information is often not readily available in embedded systems firmware,
often provided only in a non-standard format or as a raw memory dump.
This paper proposes a novel methodology for ISA identification and code
and data separation, that extends and improves the state of the art.
We identify the main shortcoming of state-of-the-art approaches and
add a capability to classify packed binaries’ architecture employing an
entropy-based method. Then, we implement an LSTM-based model with
heuristics to recognize the section boundaries inside a binary, showing
that it outperforms state-of-the-art methods. Finally, we evaluate our
approach on a dataset of binaries extracted from real-world firmware.
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1 Introduction

Unlike general computing systems, which rely on an underlying operating sys-
tem, embedded devices implement a custom software called firmware, which
runs only on a specific device and is often proprietary. Furthermore, embed-
ded systems have heterogeneous hardware. Consequently, despite progress in
dynamic analysis and emulation, third-party security auditors must still rely
on static binary analysis and reverse engineering to discover vulnerabilities and
reconstruct the behavior of a program [1]. Many tools implement static analy-
sis techniques, ranging from disassemblers and decompilers to complex analysis
frameworks [2, 3] that combine static analysis with other techniques, primarily
symbolic execution [4, 5], fuzzing [6, 7], or both [§]. The reverse engineering of
a binary through static analysis is challenging and requires disassembling the
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executable file’s machine instructions. Unfortunately, perfect disassembly is un-
decidable [9]: modern disassemblers often fall short on real-world files, such as
firmware. Additionally, static analysis tools need information about the binary’s
Instruction Set Architecture (ISA) and the boundaries of the code and data
sections. Without this prior knowledge, the disassembler does not know how to
interpret the sequences of bytes and even the analysis’s starting point.

In this paper, we tackle the problem of separating instructions from data
in a binary program (code discovery problem) to support the static analysis
without metadata — i.e., information about the ISA and the layout of a binary
file (code and data sections). For ISA identification, we improve upon a state-
of-the-art technique, ELISA [10], a methodology based on supervised machine
learning that identifies the architecture and separates code from data in raw
binary files when no metadata is available. We identify the main shortcoming of
ELISA and add a capability to classify packed binaries’ architecture employing
an entropy-based method. We implement an LSTM-based model with heuristics
to recognize the section boundaries inside a binary for code and data separation.
We evaluate our approach on a dataset of binaries extracted from real-world
firmware, showing that it outperforms FLISA’s CRF-based method, improving
the performance up to 74.03%. Additionally, we present our results through
novel metrics that are more suitable in the domain under analysis and better
catch the context peculiarities concerning the traditional metrics of accuracy,
precision, and recall. In this paper, we make the following contributions:

— We extend and improve upon ELISA [10] to classify packed binaries’ archi-
tecture employing an entropy-based method.

— We present a novel approach to better recognize the boundaries of the code
and data sections inside the binary, having only the ISA as prior information.
In our approach, we leverage an LSTM-based model with heuristics.

— We propose domain-specific metrics that better express the performance in
the context under analysis.

2 Background and Related Work

Architecture classification, code from data separation, and function boundaries
identification are well-known problems in static binary analysis. Commercial
disassembly tools need to perform, at least implicitly, these three tasks, especially
when analyzing header-less files. Even if they are not directly related to our work,
we take inspiration from these works to develop our model and heuristics.

Architecture Classification. In this context, signature matching, statistical,
and machine learning techniques have been proposed, usually leveraging differ-
ences in the distribution of byte frequency among different file types [11-14].
Clemens et al. [15] address the ISA identification problem as a machine learn-
ing classification problem, using features extracted from the byte frequency dis-
tribution of the files and comparing 10 different machine learning models (i.e.,
on the same dataset). The dataset is formed by the binaries of 20 different



architectures taken by the Debian Linux distribution and some samples from
Arduino and CUDA compiled code. The main limitation is that the features are
extracted only from the executable sections of the binaries. In our case, this is
not possible since, in our scenario, we cannot extract such information from the
binaries. Moreover, the models were trained and tested without a phase of hy-
perparameter tuning. Without tuning the hyperparameters, the results obtained
from the models can be less reliable. This phase could increase the performance
of some models and change the decision to choose one model over another. A
completely different approach leverages static signatures: the Angr static anal-
ysis framework [4] includes a tool (Boyscout) to identify the CPU architecture
of an executable by matching the file to a set of signatures containing the byte
patterns of function prologues and epilogues of known architectures, and pick-
ing the architecture with most matches; as a drawback, the signatures require
maintenance, and their quality and completeness are critical for the quality of
the classification; also, this method may fail on heavily optimized or obfuscated
code lacking of function prologues and epilogues. Lyda et al.[16] address the
problem of classifying an executable as native, compressed, or encrypted, mea-
suring the entropy of the binary file under analysis and comparing its value with
confidence intervals computed on a dataset of packed binaries. Unfortunately,
the paper does not clearly define the classification step procedure. Cpu_rec [17]
is a plugin for the popular binwalk[18] tool that uses a statistical approach,
based on Markov chains with similarity measures by cross-entropy computation,
to detect the CPU architecture or a binary file, or of part of a binary file, among
a corpus of 72 architectures. The authors of ISADetect [19] implement Clemens
and FLISA approaches and validate the results on a wider dataset. They also
provide an open-source dataset and toolset, which achieves lower scores than
ELISA on the architecture identification task.

Code and Section Identification. Andriesse et al. [20] analyze the perfor-
mance of state-of-the-art x86 and x86-64 disassemblers, evaluating the accuracy
of detecting instruction boundaries: for this task, linear sweep disassemblers have
an accuracy of 99.92%, with a false positive rate of 0.56% for the most challeng-
ing dataset, outperforming recursive traversal ones (accuracy between 99% and
96%, depending on the optimization level of the binaries). Despite this, simple
obfuscation techniques such as inserting junk bytes in the instruction stream
are enough to make linear disassemblers misclassify 26%-30% of the instruc-
tions [21]. Kruegel et al. [22] address the code discovery problem in obfuscated
binaries and propose a hybrid approach that combines control-flow-based and
statistical techniques to deal with such obfuscation techniques. Wartell et al. [9]
segment x86 machine code into valid instructions and data based on a Predi-
cation by Partial Matching model (PPM), aided by heuristics, that overcomes
the performance of a state-of-the-art commercial recursive traversal disassem-
bler, IDA Pro, when evaluated with a small dataset of Windows binaries. The
model evaluation is done by manually comparing the model output with the
disassembly from IDA Pro because precise ground truth for the binaries in the
training set is not available. This limitation does not allow testing the method
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on many binaries. This approach supports a single architecture (x86) and relies
on architecture-specific heuristics: supporting a new ISA requires implementing
the new heuristics. Chen et al. [23] address the code discovery problem in the
context of static binary translation, specifically targeted ARM binaries; they
only consider the difference between 32-bit ARM instructions and 16-bit Thumb
instructions that can be mixed in the same executable. Karampatziakis et al. [24]
present the code discovery problem in x86 binaries as a supervised learning prob-
lem over a graph, using structural SVMs to classify bytes as code or data.

Function Identification. Rosenblum et al. [25] address the problem of Func-
tion Entry Point identification in stripped binaries, using linear-chain Condi-
tional Random Fields [26] for structured classification in sequences, the same
model proposed in ELISA to tackle the problem of code discovery. ByteWeight [27]
uses statistical techniques to tackle the function identification problem (i.e., func-
tion prologue and epilogue) inside the code sections of a binary by exploiting
a weighted prefix tree and the construction of a Control Flow Graph (CFG).
The authors test their approach on a dataset comprising 2048 binaries for Linux
and Windows, compiled for x86 and x86-64 architectures, with GCC and ICC
compilers and 4 optimization levels. ByteWeight gives better results concern-
ing all the compared techniques, disassemblers, and analysis tools (i.e., Dyninst,
BAP, and IDA Pro). Shin et al. [28] use supervised machine learning techniques
to recognize boundaries of functions inside a binary. They implement different
recurrent neural network models: RNN, GRU, LSTM, and bidirectional RNN.
They test each model on the same dataset of ByteWeight [27], showing that the
proposed approach outperforms state-of-the-art techniques.

ELISA. FLISA [10] is a framework based on supervised machine learning that
aims to perform code discovery in header-less binary executable files and is in-
tended as a practical aid to aid static analysis and reverse engineering tasks.
Code discovery aims to separate the bytes containing executable instructions
from the ones containing data, given an arbitrary sequence of bytes containing
machine instructions and data and without the support of any metadata, such
as headers of debug symbols. As we use supervised machine learning models,
ELISA is signature-less: its set of supported architectures can be extended by
extending the training set without developing architecture-specific heuristics. To
accomplish this goal, ELISA follows a two-step approach. First of all, if the ISA
of the binary executable file to be analyzed is unknown, ELISA detects it using
an algorithm based on logistic regression (architecture classifier). Then, using
the detected ISA, it identifies the boundaries of the code sections and performs
fine-grained identification of data inside the code sections (section identifica-
tion). Both code section identification and fine-grained data identification are
performed using an algorithm based on supervised machine learning and, specif-
ically, on Conditional Random Fields (CRFs). To this extent, a model is trained
for each supported architecture. The original design of ELISA sports good per-
formance on the architecture identification task provided the dataset comprises
binaries where the code section is prevalent concerning the data section or where
part of the code section is neither compressed nor encrypted (i.e., packed bina-
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Figure 1: High-level scheme of the extended ISA classification module

ries). A second limitation of the original design is precision in predicting the
beginning of the code section, which is detected without errors in only 12% of
the binaries part of the evaluation dataset, making the tool difficult to use in
practice. In this paper, we propose an extension to the ISA identification step of
ELISA. We also compare the performances of our novel methodology for code
and data separation with those of ELISA.

3 Approach

3.1 Architecture Classifier

We implement the architecture classifier for the packed binaries by extending
ELISA’s implementation of the classifier [10]. We decide to use the architecture
classifier of ELISA because it is a simple machine learning model based on a
Logistic Regression that performs well with respect to the state of the art, with an
F-Score of 99% over different architectures. Moreover, extending the training set
with new binaries makes it easy to extend the model to new architectures. Figure
1 shows how our preprocessing phase interacts with the FLISA classifier. The
Packed Preprocessing block represents the preprocessing phase we implemented.

One of the main shortcomings in the original implementation of ELISA is
that it cannot classify the architecture of binaries where the code section is
packed or otherwise encrypted. To achieve this goal, we implement an approach
working with a training set of unpacked binaries and rooted into extracting from
a packed binary the executable portion composed of raw instructions (e.g., the
loader of the packed binary). Using a model that works with a training set of
unpacked binaries allows using the same model and training set for classifying
both packed and unpacked binary executables.

Because of the structure of a packed binary, an architecture classifier for un-
compressed binaries could predict a wrong ISA. In this case, the architecture
classifier would extract the Byte-Frequency Distribution (BFD) from the whole
binary, including the compressed sections. The compression algorithm alters the
bytes inside the binary, which are no more correlated with its architecture. This
can lead to an altered BFD of the binary that would fool the classifier. Our
objective is to delete the compressed sections and extract the BFD from un-
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compressed bytes, excluding the noise of the compressed parts. We integrate a
preprocessing phase with an architecture classifier for non-packed binaries.

We use an approach based on entropy computation to recognize the com-
pressed parts of the binary. Since the entropy is based on the frequency of the
bytes inside the binary, the compression algorithm also alters the entropy value.
Usually, data compression increases the entropy value of the data, which can be
considered a measure of how much information the data contains [29]. Since we
are applying lossless data compression (we want to reconstruct the original data
perfectly), the information in compressed and uncompressed data is the same.
After the compression, we represent the same information in fewer data or bytes.
Another way to interpret entropy is through the redundancy of the information.
If the data have high redundancy, they have low entropy. The objective of a
compression algorithm is to remove the redundancy inside the data, so we want
to represent the same information but with the least possible amount of data
[30]. Thus, the predictability of a bit decreases, and the probability of the bit
assuming the value 0 or 1 goes towards 0.5, which represents random data. The
more the compression algorithm can remove redundancy, the higher the entropy
value is. Thus, by computing the entropy value, we can classify a sequence of
bytes as compressed or uncompressed.

Preprocessing for the Architecture Classifier. To implement our prepro-
cessing phase, we use an approach similar to the one discussed in the work of
Lyda et al. [16]. We divide the binary into blocks of fixed length, and for each
block, we compute the entropy. We consider a block as a sequence of bytes of
fixed size. We choose to set the block size to 256 bytes. The entropy of a block
z is given by H(z) = — >, p(i)log, p(i), where, in our case, p(i) represents
the frequency of the byte i inside the block x and m is the number of values
that a byte can assume, so 256. In this case, the entropy is a real value between
0 and 8, representing the lowest and the highest possible entropy, respectively.
After computing the entropy of each block of the binary, we delete a block if its
entropy value is over a certain threshold, which means that we consider the block
compressed. Following empirical analysis, we set this threshold to 6.3: further
details are explained in Appendix A. Then, we collect all the bytes of the un-
compressed blocks and use them in the preprocessing phase of the architecture
classifier. In this way, the classifier extracts the features only from bytes relevant
to the architecture’s recognition, and it should not be fooled by an altered BFD
given by the compression algorithm. Our approach is used before the preprocess-
ing phase of the architecture classifier and only during the prediction task, so it
would also work on a pre-trained model used to classify unpacked binaries. For
the same reason, this approach can be used on every model that uses features
based on the distribution of the bytes.

3.2 Section identification

During section identification, we classify each byte of the binary as belonging
to a section of code or data using a Bidirectional LSTM, which is a supervised



learning model. To the best of our knowledge, the only work that tries to solve
the same problem is ELISA, in which the authors use a linear chain CRF model.
This model can consider not only the context of a feature, that in this case is a
sequence of bytes but also the correlation between the model outputs associated
with adjacent bytes. LSTM is among the most used models in the state of the
art and a valid alternative to the Linear Chain CRF [31]. In work done by Shin
et al. [31], the authors use an LSTM model to recognize the boundaries of the
functions inside a binary. They take a sequence of bytes and try to classify each
byte as the beginning of a function, the end of a function, or code. This scenario
can be compared to our problem since we try to classify each byte of a sequence
as code or data. This work shows that the LSTM gives results that overcome
the state of the art. For these reasons, we decide to implement a Bidirectional
LSTM that allows us to consider the context before and after a certain byte.
The section identification process can be divided into 4 steps: Preprocessing,
Training, Prediction, and Postprocessing.

Training Set Preprocessing. In our scenario, we are dealing with binaries of
which we do not have any information besides their ISA. During the preprocess-
ing phase, we extract the features used to train the model that, in our case, are
the bytes of the binary. Our choice is also common in other works like ELISA
[10] and the work of Shin et al. [31]. We decide to use the one-hot-encoding
representation of the bytes to treat the bytes as categorical features. This way,
we are considering each possible value of a byte as a different category and not
as an integer that could lead the model to learn an order relation between the
bytes that does not exist. Thus, the byte is represented by a vector of 256 el-
ements, which are the values that a byte can take, in which the i-th element
is set to 1 if the value of the byte is 7. Since our model works on sequences of
samples (bytes) that are fixed, we have to split the binary into sequences of fixed
length. The preprocessing phase differs a little during the training and predic-
tion tasks. During the training phase, we randomly choose a binary from the
dataset, read the binary as a stream of bytes and randomly take a point in the
binary. From the chosen point on, we take a number of bytes equal to the length
of the sequence. If the chosen point is near the end of the binary could happen
that the sequence goes over the end of the binary. After the last available byte
of the binary, to complete the sequence, we add a padding formed by vectors of
256 elements in which each element has a value equal to 0. This way, we have
our first sequence of samples to pass to the model. To extract more sequences
to create the complete feature matrix, we repeat this procedure until we have
extracted a number of bytes equal to the total size in bytes of the training set.
This way, we obtain a set of sequences that are randomly selected. This is done
to prevent the network from training first on long sequences of samples of a class
and then on long sequences of the other class since this could lead to a wrong
tuning of the parameters. In the training phase, in addition to the features,
we extract the ground truth from the information contained inside the section
header of the binaries, in which are stored which sections are executable and the
exact boundaries of each section, more precisely, the beginning of a section and
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its size. With this information, we create a vector of the size of the binary in
which the i-th position is equal to 1 if the i-th byte of the binary belongs to a
section of code, 0 otherwise. For example, if we have a binary of 10 bytes and the
bytes from index 3 to 7 are in an executable section, the vector of the ground
truth would be: y = (0,0,0,1,1,1,1,1,0,0). During the prediction phase, we
split the binary into fixed-length sequences of bytes, where the model structure
gives the sequence length. If the length of the binary in bytes is not divisible by
the length of the sequence, we add padding to the last part of the binary. As for
training, before the prediction, we transform each byte in the one-hot-encoding
representation of their values.

Training. During the training phase, we use the sequences of samples extracted
during the preprocessing phase to update all the model parameters. We use a
Cross-Entropy loss function to do this because it is the most common choice when
we have a binary classification problem. It is defined as Loss = —(y; log(¥;)+(1—
yi) log(1—4;)), where y; is the actual label of the sample i and g; is the prediction
for the sample 7 that, in our case, is the output of the sigmoid of the output layer.
We use the Adam optimization method [32], which optimizes the learning phase
adapting the learning rate individually for each network parameter. We divide
the training dataset into mini-batches. The computation of the gradient of the
loss function for each sample can cause a large variance in the gradients since
each sample can differ significantly from the other. So we use small batches
of samples that allow averaging the gradients and decreasing the variance. In
addition, this also increases the performance since the weights are updated only
once for all the samples of the batch. All the training phase, considered as the
training of the network over all the sequences extracted from the training set, is
done a fixed number of times called epochs.

Prediction. For the prediction phase, we execute the preprocessing phase de-
scribed before on the binary we want to analyze. After preprocessing, we obtain
a vector with a size equal to the number of bytes in the binary where each item
with index ¢ in the vector has value 1 if the i-th byte of the binary belongs to
a section of code, 0 if it belongs to a section of data. The output vector has the
same structure as the ground truth vector extracted during preprocessing.

Postprocessing. For the postprocessing phase, we apply 3 different techniques
to improve the results of the model further. These 3 approaches are used in the
same order as they are described. The first technique used for the postprocessing
phase is the one developed by the authors of ELISA [10]. Since our model outputs
a vector equal in structure to the output vector of ELISA, we can use their
postprocessing phase as it is. We decide to reuse this technique since it is based
on a simple approach that increases the model’s performance and is entirely
independent of the model used. As described by the authors of ELISA, this
phase is needed because code sections may contain small pieces of data. This
phase is based on an iterative algorithm that removes the smallest chunk of
data or code by merging it with the surrounding section. This algorithm inverts
the labels of the bytes of a chunk c if the total number of chunks is greater
than the minimum number of section set and if the length of ¢ is less than the



longest chunk times a multiplicative factor. The minimum number of sections
and the multiplicative factor called Cutoff are parameters set manually. The
second technique is based on the model developed by the authors of Byteweight
[33], which is used to recognize the prologue of the functions inside a binary.
To employ this approach, we analyze the position of the functions inside the
binaries. To extract this information, we used two datasets, the one used to
train the Byteweight model and a dataset formed by binaries extracted from
the firmware of embedded devices. We implement the approach used in the
Byteweight paper to recognize the function prologue through the weighted prefix
tree. We use the same dataset used in Byteweight to update the tree weights. We
take the Coreutils, Binutils, and Findutils sources and compile them for different
architectures. We compile the binaries with debug symbols to extract the ground
truth and with 4 different compiler optimization levels.

We use the Byteweight prefix tree to improve the performance of our model
as follows. We predict the sections of a binary with our model, so we have the
output vector of the classifier. We find the functions prologue inside the binary
and perform this check for each predicted code section. If the beginning of the
section coincides with a function prologue, we consider the prediction correct.
Otherwise, we search for a function prologue around the beginning of the sec-
tion, given a determined offset value. If we find it, we update the beginning of
the section to match the position of the function prologue. This approach works
because, usually, the error offset between the predicted start of a section and
its actual start is lower than 6 bytes. The last technique is the one based on
the frequency of the instructions. First, we create a dictionary of instructions.
Each instruction is associated with a value that represents an estimated proba-
bility of the appearance of that instruction. To compute these probabilities, we
use the same dataset used to generate the Byteweight tree. For each architec-
ture, we disassemble all the binaries. For each found instruction, we compute
the frequency f; of instruction i as f; = Occ;/N where Occ; is the number of
occurrences of instruction 4 in all the disassembled instructions of the dataset,
and N is the total number of disassembled instructions in the dataset. After
we obtain the instruction statistics, we can apply this postprocessing phase to
the prediction of the LSTM model. We disassemble each predicted code section
starting from the bytes around the start of the section. We take 4 bytes as the
window in which we search for instructions. This allows us to minimize wrong
modifications of the prediction, i.e., when the model has correctly predicted the
beginning of the section, and we change the prediction because we find an in-
struction with a higher frequency. If the prediction is correct, the disassembly
run on the bytes around the considered position should lead to an instruction
that is less used (low-frequency value) or to a not existing instruction. Then,
we take the instruction with the highest frequency and modify the start of the
section to coincide with the beginning of the chosen instruction.



10 R. Remigio et al.

Table 1: Composition of the five datasets: eight (BW), Debian (DEB), Debian
Packed (DEBP), Firmware (FW), Firmware Packed (FWP).

Architecture BW DEB DEBP FW FWP
amd64 588 385 277 971 75
arm32 572 - - 275 75
arm64 572 382 - 496 19

armel 531 385 237 1000 762
armhf - 385 192 - -
i386 440 385 249 422 181
mips 572 384 255 795 398
mips64 572 - - 482 -
mipsel 572 384 257 983 567
powerpc 572 - - 934 282
ppcb4el - 380 278 - -

4 Experimental Evaluation

In this section, we describe the datasets used, the metrics that we implemented
and we show the results of our model. We also comment on the results we obtain
and compare them with the current state of the art. Through these results, we
want to demonstrate that our approach obtains better performance with the
respect to the state-of-the-art approaches.

4.1 Dataset composition

To evaluate and train the different models that we use in this paper. For simplic-
ity, we give each dataset a label. (1) Byteweight: this dataset is built from the
same sources as the one used in the Byteweight paper to update the weights of
the prefix tree. We download the source code of Coreutils, Findutils, and Binu-
tils utilities of Linux. Then we use the GNU toolchain to compile the source
code with 4 optimization levels and debug symbols for 9 different architectures.
(2) Debian: this is the dataset used by De Nicolao et al. [10]. It comprises the
binaries taken by the Debian package repository and compiled for 8 different
architectures. (3) Debian packed: this dataset is built by running the UPX
compression tool on every binary of the Debian dataset. @ Firmware: this
dataset comprises binaries extracted from the firmware of embedded devices,
which is based on Linux: the extracted binaries are ELF files. The firmware is
taken by a collection built during the work of Mkhatvari [34], which contains
the firmware of embedded devices downloaded from the vendor sites through
web scraping. The authors of the paper used the Firmadyne [35] web scraper to
download the firmware images from the site of known vendors: Linksys, Tp-Link,
Netgear, Tenda, D-link, Ubiquiti Networks, and Asus. @ Firmware packed:
this dataset is built by running the UPX compression tool on every binary of
the Firmware dataset.
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The Debian packed and Firmware packed datasets contain fewer binaries
with respect to the Debian and Firmware datasets because the UPX tool was
not able to pack some binaries. Some architectures are not supported by UPX,
and some types of binaries can not be packed, like relocatable kernel modules.
The composition of the five datasets is shown in Table 1.

4.2 Metrics

We use several metrics to evaluate the architecture classification and section
identification models. Accuracy, Precision, Recall, and F-Score are traditionally
used to evaluate machine learning classifiers. These metrics evaluate a model
through the number of samples correctly or wrongly predicted, and they are
expressed in terms of True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). In the section identification evaluation, the pos-
itive class is the one that represents the code, and the negative class represents
the data. Since there are more classes in the architecture classification, these
metrics are defined for each class. We use the macro average of each metric com-
puted between the classes to give a general result. This way, we give the same
importance to each class.

We also implement three metrics that we use to evaluate the performances
of our model on the section identification task: (1) Data to Code offset (DC)
measures the number of bytes between the beginning of a real section of code
and the beginning of the corresponding predicted section of code; (2) Code to
Data offset (CD) measures the number of bytes between the beginning of a real
section of data and the beginning of the corresponding predicted section of data;
(3) Wrong Sections (WS) is the difference between the number of sections in
the binary and the number of sections in the prediction. If we have contiguous
sections of code (data), we consider them a single section because we cannot
distinguish different sections of the same type.

Since it can happen that the number of sections of the prediction is not
correct, we cannot compute the offsets matching each section by their position.
To correctly compute the offsets, we calculate them between the overlapping
sections. As shown in Figure 2, the offset is computed only for the second code
section, which overlaps with the one in the ground truth, and not for the first code
section considered wrongly predicted. This approach could lead to a wrong eval-
uation when two predicted sections overlap with a single section of the ground
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Table 2: Results of FLISA and our architecture classifier on the Debian Packed
dataset. In the Table we report precision (P), recall(R), and F1-Score (F1).

ELISA Our approach

Class P 0 i P R bp i Samples
amd64  [[1.000]0.018]  0.035  [0.829]0.776]  0.830 277
armel 0.000]0.000]  0.000  [0.585[0.726]  0.648 237
armhf  [[0.124[1.000]  0.221 0.159]0.073]  0.100 192

1386 1.000[0.076]  0.142  0.830[0.763]  0.795 249

mips 1.000]0.455[  0.625  |0.740[0.949]  0.832 255
mipsel  [[1.000[0.027]  0.053  [0.903[0.942]  0.922 257
ppcbdel  [[1.000[0.194]  0.325  [0.869]0.932]  0.899 278

[ Total  [0.732[0.253]  0.200  [0.711[0.737[ 0.718 | 1745 ]

truth. However, this situation is rare since the section offsets of our model are
usually small, as we will show in the results.

We decide to use these metrics because the classic accuracy, precision, and
recall metrics are insufficient to evaluate our approach. They consider each clas-
sified byte with the same weight, while we want to give more importance to
the bytes on the boundaries. More precisely, we want to know if our classifier
can correctly predict each section’s beginning and end, as our objective is to
perform static analysis on a binary that does not have metadata: one necessary
information is the exact boundaries of each section.

4.3 Architecture classification

To evaluate the architecture classification of packed binaries, we test our model
on the Debian and Firmware datasets. We want to show the difference between
the base classifier of FLISA and our extended version, demonstrating the im-
provement of performance given by our approach when dealing with packed
binaries. For each model, we used unpacked binaries’ datasets as a training set
and all the packed binaries as a test set. The UPX tool compresses and adds a
portion of code at the end of the binary with the decompression routine. This
way, the BFD of the binaries is completely altered.

We show the results of our tests in Table 2 and Table 3. As expected, ELISA’s
classifier does not perform well with packed binaries. For some architectures we
have an high precision given by a low level of false positives, but, as we can see
from the recall score, we have also an high number of false negatives. As we
can see from the recall value of the armhf architecture (when using the Debian
dataset), the classifier tends to classify most of the binaries with that class.
We can see a similar behaviour with the same model trained on the Firmware
dataset. In fact, there are some binaries that are correctly classified but the
general trend of the values is highly variable between the classes.

We can see that the results of our approach are better, with an average F-
Score of 71.8% on the Debian dataset and 89.0% on the Firmware dataset. In
the first case, the values are homogeneous between the architectures other than
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Table 3: Results of ELISA and our architecture classifier on the Firmware Packed
dataset. In the Table we report precision (P), recall(R), and F1-Score (F1).

ELISA Our approach
Class P i i P it bp i Samples
amd64  [[1.000[0.520]  0.684  [0.881]0.787|  0.831 75
arm32  [[0.000]0.000]  0.000  [0.951[0.773]  0.853 75
arm64 1.000/0.158]  0.273 1.000[0.789]  0.882 19
armel 0.730[0.298]  0.423  [0.814[0.987]  0.892 762
1386 1.000[0.387]  0.558 1.000]0.751 0.858 181
mips 0.227[0.997]  0.370  [0.935[0.942]  0.939 398
mipsel  [[0.695[0.229]  0.345  [0.974[0.850]  0.980 567
powerpc_ [[0.000[0.000[ 0.000 1.000[0.922]  0.959 282
[ Total  [[0.582[0.324] 0.332  0.944[0.850[ 0.890 | 2359 ]

Table 4: Results of ELISA and our Bidirectional LSTM with/without heuristics
on the section identification task on the Firmware dataset. Higher is better for
CD and DC, lower is better for WS.

Architecture ELISA ELISA + H Bi-LSTM Bi-LSTM + H
CD DC WS|CD DC WS|CD DC WS | CD DC WS

amd64 85.0% 61.1% 10.7%85.0% 63.9% 10.7%85.8% 90.6% 6.3% |85.8% 91.0% 6.3%
arm32 60.7% 88.4% 18.1%60.7% 94.8% 18.1%|58.7% 96.1% 14.8%58.7% 96.1% 14.8%
arm64 18.9% 40.4% 48.9%|18.9% 45.5% 48.9%|35.4% 77.9% 39.1%|35.4% 77.9% 39.1%
armel 54.6% 90.3% 25.3%|54.6% 92.5% 25.3%|68.3% 86.5% 25.2%|68.3% 93.8% 25.2%
1386 78.2% 62.9% 41.4%|78.2% 63.3% 41.4%|88.1% 85.1% 38.7%88.1% 90.4% 38.7%
mips 50.8% 16.0% 53.6%|50.8% 72.2% 53.6%|66.5% 63.9% 52.3%66.5% 74.2% 52.3%
mips64 38.3% 10.6% 38.6%|38.3% 81.6% 38.6%|80.5% 74.6% 36.6%80.5% 84.6% 36.6%
mipsel 66.1% 8.4% 59.9%|66.1% 40.5% 59.9%|66.5% 29.2% 59.9%66.5% 47.9% 59.9%
powerpc  |76.5% 53.4% 50.7%|76.5% 60.1% 50.7%|77.0% 57.9% 49.4%|77.0% 64.9% 49.4%

the armel and armhf architectures. This behaviour is given by the fact that the
armel and armhf architectures share almost the same instructions and the same
endianness. Differently from the scenario in which we are dealing with unpacked
binaries, in this case we do not have enough bytes to distinguish a binary between
these two architectures. By repeating the same experiment removing the armhf
architecture from the dataset, we obtained better results: the average F1l-score
goes up to 91%. In the case of the Firmware dataset, the recall of the amd64,
arm32 and arm64 binaries is a little under the average, but this could be because
of the low number of tested samples.

4.4 Section identification

To test the Bidirectional LSTM, we use a training set composed by 120 binaries
for each architecture, and a test set composed by the rest of the binaries. We
first tested ELISA and our model on the Firmware dataset: the results show
that our model performs better, but the average F1-score improvement is 0.007.
Using classic metrics, we had small room for improvement, since ELISA already
had scores around 0.99. To have a better evaluation of the model and extract
relevant information we have to check the results given through our new metrics:
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Table 5: Bidirectional LSTM improvements with respect to FLISA.

Architecture| amd64 arm32 arm64 armel 386 mips mips64 mipsel powerpc
CD +0.8% -1.9% +16.5% +13.8% +9.9% +15.7% +42.2% +0.5% +0.5%
DC +29.9% +7.7% +38.0% +3.4% +27.5% +58.2% +74.0% +39.5% +11.4%
WS -4.3% -3.2% -9.8% -01% -2.7% -13% -2.0% 0% -1.4%

Table 6: Binaries with predicted section boundary offset less or equal to 6 bytes.

Architecture/amd64 arm32 arm64 armel i386 mips mips64 mipsel powerpc
CD 97.5% 92.3% 59.0% 84.9% 97.7% 87.8% 80.2% 85.6% 95.2%
DC 96.4% 98.1% 94.7% 96.5% 99.7% 82.2% 94.4% 73.2% 73.3%

Code to Data, Data to Code, Wrong Sections, already covered in Section 4.2. For
Data to Code, we consider the number of binaries in which the model predicts
the beginning of all code sections with a data-to-code offset equal to zero. For
Code to Data, we consider the number of binaries in which the model predicts the
beginning of all data sections with a code-to-data offset equal to zero. For Wrong
Sections, we consider the number of binaries where the real sections number and
the predicted one differ. All these metrics are reported as percentages over the
total number of binaries for each architecture.

In Table 4, we report the results of the test for both ELISA and our model,
both evaluated without applying the heuristics described in Section 3.2 first, and
applying the heuristics then. In this Table, we can see how our model performs
better than ELISA in the Mips and Mips64 architectures. In these two archi-
tectures, we have an average improvement of 66% in recognizing the beginning
of the code sections. From these results, we can see that the heuristics that we
implemented give our model an improvement for some architectures.

We test the heuristics also on ELISA: we can see that the greatest improve-
ment is given on Mips, Mips64, and Mipsel with an average increase of 53% be-
tween these three architectures on the data-to-code metric. In Table 5, we show
the improvement of our model with respect to FLISA: we present the percentage
improvements between FLISA and the bidirectional LSTM with heuristics ap-
plied. The only architecture in which we have results that are slightly worse than
the ELISA one is arm32, in which our model has a code to data decrease of 2%.
A graphic visualization of the comparison between Elisa and the bidirectional
LSTM model with the heuristics applied is in Figures 3a and 3b. In these two
graphs, we show the number of binaries in which the models correctly predict
the code-to-data transition and the data-to-code transition. Finally, in Table 6
we report the number of binaries in which the offset between each predicted
section boundary and the corresponding section boundary of the ground truth is
less or equal to 6 bytes. In these results, we can see that 88% of the binaries, on
average, have an error between the predicted section boundary and real section
boundary of fewer than 6 bytes. This is also the reason why we implemented the
heuristics that work in a little range around the section boundary. For all the
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B Elisa W Bidirectional LSTM with heuristics W Elisa M Bidirectional LSTM with heuristics
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400

Number of binaries
Number of binaries
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amd64 arm32 arm64 armel (386 mips mipsé4 mipsel powerpc amdé4 arm32 arméd armel 1386 mips mipsé4 mipsel powerpc

(a) Code to Data (b) Data to Code

Figure 3: Number of binaries with offsets equal to 0.

considered architectures preprocessing took between 3 and 108 minutes, training
took between 5 and 19 minutes and testing took between 3 an 105 minutes.

5 Conclusion

We implement our approach for the architecture classifier extending an exis-
tent work, FLISA. We add a preprocessing phase that allows us to extract the
features only from the relevant bytes that belong to uncompressed blocks. For
section identification, we implement a novel approach based on a Bidirectional
LSTM model that uses one-hot-encoding of bytes as features. To further improve
the results of this classifier we added three postprocessing phases. In Section 4,
we show the improvements given by our approach with respect to the base clas-
sifier of ELISA. We tested both approaches on the Debian dataset and on the
Firmware dataset. For the section identification, we show that, with both “tra-
ditional" and new metrics, our model performs better. With our metrics, we can
see a greater improvement.

Limitations and Future Work. As we stated in the introduction the ap-
proaches described in this paper can be used to analyze binaries that do not
have any metadata associated, as our approach is able to recognize even the
architecture of packed binary. This information can enable the analysis of the
file. However, an attacker could easily alter the binary to avoid its analysis by
putting some constant data inside the blocks of the binary. In this way, they alter
the BFD of the binary and decrease the entropy of the blocks. In this situation,
our approach would not extract the compressed blocks and the classifier would
extract an altered BFD that leads to a wrong prediction.

In some architectures, our model still has pretty low results. Possible fu-
ture works could be the implementation of heuristics that are able to delete the
sections that are wrongly predicted by the model and the exploration of new
models. As we have seen, in this scenario, the models used for sequential predic-
tions seem to perform well. Researchers can try other models used in the field
of Natural Language Processing (NLP). Another approach could be to use more
complex structures combining different models together.
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A Hyperparameter tuning

In this appendix, we describe how we found the optimal values for some of the
hyperparameters used in our approach.

A.1 Architecture classifier

In our approach, we have to set two parameters to extract the uncompressed
blocks from the binary. The first one is the size of the blocks on which we
compute the entropy. We tried different values of the block size (128, 256, 512,
1024, 2048, 3072) and we found that the best value is 256. From 256 to 1024
the performances of the model remain the same, while from 2048 on we see that
the performances of the classifier tend to decrease. We chose to use 256 as size
as we want to extract compressed blocks in a more fine-grained way. This result
is consistent with the value used in Lyda et al. [16]. The second parameter is
the entropy threshold used to classify a block as compressed or not. To find
the optimal value of this parameter we check the entropy of blocks inside the
binaries. First, we compute the maximum entropy between the blocks of code
inside a binary. Then we compute the mean between the maximum entropy of
each binary for each architecture. In table 7 we report the results of the mean
maximum entropy for the different architectures. We can see that the entropy
value is almost homogeneous between the architectures. In this way, we have
an estimate of the value of the entropy of the blocks that we want to extract.
Starting from a value of 6 as the entropy threshold, we test higher values and we
find that the optimal value is 6.3. This value is also consistent with the confidence
interval computed in Lyda et al. [16].

A.2 Section identification

Bidirectional LSTM Hyperparameters. The first two hyperparameters are
the dimension of the input and the dimension of the output vector of the LSTM
cell. To tune these hyperparameters we perform a grid search between different
values. As a starting point, we take the values used by Shin et al. for their
model [28]. We define a vector of values for the input dimension [500, 1000,
2000] and for the dimension of the LSTM output [8, 16, 24, 32, 40]. The number
of different models created through these values is the Cartesian product of the
dimension of the two vectors since we want to check all the permutations. The
model is evaluated on a validation set formed by 120 binaries taken from the
Firmware dataset and with the new metrics. Since we use custom metrics, we

Table 7: Mean maximum code entropy of unpacked binaries
Architecture|amd64 arm32 arm64 armel 1386 mips mipsel powerpc
Mean Entropy| 5.89 5.68 5.81 5.74 5.86 5.41 5.28 5.93
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Table 8: Hyperparamters values for LSTM model

Architecture amd64 arm32 arm64 armel 1386 mips mips64 mipsel powerpc
Input dimension 25 70 75 100 25 50 50 50 50
LSTM output dimension| 24 24 24 24 32 32 32 16 32

are not able to use existent libraries to decide which hyperparameter value is
better than another. The solution is to evaluate each model on the dataset and
check the results by hand. The results show that for high dimensions of the
input, the performances seem to decrease. So, we train and test the model again
with different values of the input dimension that are [25, 50, 75, 100]. With
these values, we see a great improvement in the performance of the model. Each
model seems to have different best values for these hyperparameters, however,
these values are included in a limited range that could be easily explored. The
table 8 shows the values of the hyperparameters used. We do not perform a grid
search for the batch size: we take the same value used in the paper of Shin et
al. The batch size can modify the time that the model takes to converge to an
optimal solution, but should not have a great impact on the performance of the
model with respect to the previous hyperparameters. The number of epochs for
which the model has to train is set to 5. To decide this value we run a training
phase on the model and we see that after 5 epochs the value of the loss function
is low and it remains pretty constant on the successive epochs.

Postprocessing parameters. For the postprocessing phase, we have to tune
the parameters of the FLISA and Byteweight approach. The postprocessing
phase of FLISA takes two parameters as input: the minimum number of sections
that the prediction vector must have, and the maximum size of the chunk that
can be eliminated, represented as the percentage of the size of the biggest chunk.
These two parameters were already optimized by the authors of ELISA, so we
decide to use the same values: 4 as the minimum number of sections and 0.1
for the chunk size. The postprocessing phase that we implemented takes two
parameters as input. These two values define the range around the beginning
of a section in which we search for a function prologue. To define this range we
use two values that represent the positive offset and the negative offset from
the section boundary. To find the optimal value for the positive offset, we used
the Byteweight dataset to make an estimate of the positions of the functions
prologue. We discovered that in some binaries, if the section does not begin with
a function, the first encountered function is at an offset of 4 bytes. In order
to avoid wrong modification of the start of a code section, we set the positive
offset parameter to 3. For the negative offset parameter, we manually tested
some values but, over a certain value, the results do not seem to change: only for
large values of the offset (e.g., 500 bytes), the performance seems to decrease.
We do not expect to find functions in a data section, but the Byteweight model
can wrongly predict a function prologue. After some tests, we decide to set this
parameter to 40 in order to prevent the Byteweight model from predicting a
function in the data section.
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