Skip to main content

Improved Boomerang Attacks on Deoxys-BC

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14128))

Included in the following conference series:

  • 317 Accesses

Abstract

In this paper, we present two techniques to improve the previous attack against the tweakable block cipher Deoxys-BC. First, we apply the idea of “key bridging” to Deoxys-BC and get a better attack on the 9-round Deoxys-BC-256 whose time complexity is decreased from \(2^{168}\) to \(2^{147}\) and memory complexity is decreased from \(2^{129}\) to \(2^{100}\). Second, we adjust the distinguisher to utilize the additional sieve to filter the data better. Then we apply this method to the 14-round attack on Deoxys-BC-384 and reduce the time complexity from \(2^{278.8}\) to \(2^{260.4}\) and the memory complexity from \(2^{129}\) to \(2^{125.4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more details, we recommend the readers refer to the homepage of the CAESAR competition. http://competitions.cr.yp.to/caesar.html.

  2. 2.

    The readers can go to https://www.iso.org/obp/ui/#iso:std:iso-iec:18033:-7:ed-1:v1:en to find more information about this standard.

References

  1. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_1

    Chapter  Google Scholar 

  2. Bao, Z., Guo, C., Guo, J., Song, L.: TNT: how to tweak a block cipher. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 641–673. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_22

    Chapter  Google Scholar 

  3. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1

    Chapter  Google Scholar 

  4. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_14

    Chapter  Google Scholar 

  5. Bariant, A., Leurent, G.: Truncated boomerang attacks and application to AES-based ciphers. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023. EUROCRYPT 2023. LNCS, vol. 14007, pages 3–35. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30634-1_1

  6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Y.: ESTATE: a lightweight and low energy authenticated encryption mode. IACR Trans. Symmetric Cryptology 350–389, 2020 (2020)

    Google Scholar 

  8. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L: A security analysis of Deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2017(3), 73–107 (2017)

    Google Scholar 

  9. Cid, C., Huang, T., Peyrin, T., Sasaki, Yu., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22

    Chapter  Google Scholar 

  10. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-round , in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_23

    Chapter  MATH  Google Scholar 

  11. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_21

    Chapter  MATH  Google Scholar 

  12. Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule algorithms in rectangle attacks. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022. EUROCRYPT 2022, Part III, LNCS, vol. 13277, pp. 3–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_1

  13. Daemen, J., Rijmen, V.: The design of Rijndael, vol. 2. Springer, Berlin (2002). https://doi.org/10.1007/978-3-662-60769-5

  14. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_7

    Chapter  Google Scholar 

  15. Hadipour, H., Sadeghi, S., Eichlseder, M.: Finding the impossible: automated search for full impossible-differential, zero-correlation, and integral attacks. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023. EUROCRYPT 2023, Part IV, LNCS, vol. 14007, pp. 128–157. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30634-1_5

  16. Jean, J., Nikolic, I., Peyrin, T.: KIASU v1. Submitted to the CAESAR competition (2014)

    Google Scholar 

  17. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15

    Chapter  Google Scholar 

  18. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1. 41. Submitted CAESAR 124 (2016)

    Google Scholar 

  19. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: The deoxys aead family. J. Cryptology 34(3), 31 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, L., Jia, K., Wang, X.: Improved single-key attacks on 9-round AES-192/256. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 127–146. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_7

    Chapter  Google Scholar 

  21. Moazami, F., Soleimany, H., et al. Impossible differential cryptanalysis on Deoxys-BC-256. Cryptology ePrint Archive (2018)

    Google Scholar 

  22. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theor. 57(4), 2517–2521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nikolic, I.: Tiaoxin-346. Submission to the CAESAR competition (2014)

    Google Scholar 

  24. Data Encryption Standard et al. Data encryption standard. Federal Information Processing Standards Publication, vol. 112 (1999)

    Google Scholar 

  25. Song, L., et al.: Optimizing rectangle attacks: a unified and generic framework for key recovery. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT 2022. ASIACRYPT 2022, Part I, LNCS, vol. 13791, pp. 410–440. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22963-3_14

  26. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

    Chapter  Google Scholar 

  27. Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric Cryptol. 2019(3), 121–151 (2019)

    Article  Google Scholar 

  28. Zhao, B., Dong, X., Jia, K., Meier, W.: Improved related-Tweakey rectangle attacks on reduced-round Deoxys-BC-384 and Deoxys-I-256-128. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 139–159. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_7

    Chapter  Google Scholar 

  29. Zong, R., Dong, X., Wang, X.: Related-tweakey impossible differential attack on reduced-round Deoxys-BC-256. Sci. China Inf. Sci. 62(3), 1–12 (2019). https://doi.org/10.1007/s11432-017-9382-2

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers for their helpful comments and suggestions. This paper is supported by the National Key Research and Development Program (No. 2018YFA0704704, No.2022YFB2701900, No.2022YFB2703003) and the National Natural Science Foundation of China (Grants 62202460, 62022036, 62132008, 62172410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Zhang, N., Yang, Q., Song, L., Hu, L. (2023). Improved Boomerang Attacks on Deoxys-BC. In: Shikata, J., Kuzuno, H. (eds) Advances in Information and Computer Security. IWSEC 2023. Lecture Notes in Computer Science, vol 14128. Springer, Cham. https://doi.org/10.1007/978-3-031-41326-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41326-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41325-4

  • Online ISBN: 978-3-031-41326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics