Skip to main content

Desertification Detection in Satellite Images Using Siamese Variational Autoencoder with Transfer Learning

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2023)

Abstract

This paper proposes a deep transfer learning (TL) model based on Siamese Variational Autoencoder (SVAE) for change detection (CD) in satellite imagery using limited labeled data. The proposed approach has two steps: pre-training the SVAE in the source scene and fine-tuning it for deploying in the target scene for desertification detection. The model was tested using Landsat images from 2001 to 2020 from two study areas in Tunisia’s arid regions. The results were compared with the Siamese Convolutional Neural Network (SCNN) model. Results showed that SVAE outperformed in all metrics with an accuracy of 93%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://code.earthengine.google.com/.

References

  1. Xiong, Y., Zuo, R.: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder. Math. Geosci. 54(3), 623–644 (2022)

    Article  MathSciNet  Google Scholar 

  2. Rhif, M., Abbes, A.B., Martinez, B., Farah, I.R.: Deep learning models performance for NDVI time series prediction: a case study on northwest Tunisia. In: Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), pp. 9–12. IEEE, Tunisia (2020)

    Google Scholar 

  3. Ferchichi, A., Abbes, A.B., Barra, V., Farah, I.R.: Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: a systematic literature review. Ecol. Inf. 68, 101552 (2022)

    Article  Google Scholar 

  4. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 1–74 (2021)

    Article  Google Scholar 

  5. Amari, R., Noubigh, Z., Zrigui, S., Berchech, D., Nicolas, H., Zrigui, M.: Deep convolutional neural network for Arabic speech recognition. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawinski, B. (eds.) ICCCI 2022. Lecture Notes in Computer Science, vol. 13501, pp. 120–134. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16014-1_11

    Chapter  Google Scholar 

  6. Aslan, M.F., Sabanci, K., Durdu, A., Unlersen, M.F.: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian optimization. Comput. Biol. Med. 142, 105244 (2022)

    Article  Google Scholar 

  7. Zerrouki, Y., Harrou, F., Zerrouki, N., Dairi, A., Sun, Y.: Desertification detection using an improved variational autoencoder-based approach through ETM-landsat satellite data. IEEE J. Select. Top. Appl. Earth Observations Remote Sens. 14, 202–213 (2020)

    Article  Google Scholar 

  8. Ran, X., Xu, M., Mei, L., Xu, Q., Liu, Q.: Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation. Neural Netw. 145, 199–208 (2022)

    Article  Google Scholar 

  9. Farah, C., Manel, R., Abbes, A.B., Farah, I.R.: Desertification detection based on landsat time-series images and variational auto-encoder: application in Jeffera, Tunisia. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 3688–3691. IEEE, Malaysia (2022)

    Google Scholar 

  10. Zhao, G., Peng, Y.: Semisupervised SAR image change detection based on a siamese variational autoencoder. Inf. Process. Manage. 59(1), 102726 (2022)

    Article  Google Scholar 

  11. Ghosh, S., Ghosh, S., Kumar, P., Scheme, E., Roy, P.P.: A novel spatio-temporal siamese network for 3d signature recognition. Pattern Recognit. Lett. 144, 13–20 (2021)

    Article  Google Scholar 

  12. Zhang, K.: Content-based image retrieval with a convolutional siamese neural network: distinguishing lung cancer and tuberculosis in CT images. Comput. Biol. Med. 140, 105096 (2022)

    Article  Google Scholar 

  13. Krishnamurthy, S., Srinivasan, K., Qaisar, S.M., Vincent, P.M.D.R., Chang, C.: Evaluating deep neural network architectures with transfer learning for pneumonitis diagnosis. Comput. Math. Methods Med. 2021, 1–12 (2021)

    Article  Google Scholar 

  14. Baker, N.A., Zengeler, N., Handmann, U.: A transfer learning evaluation of deep neural networks for image classification. Mach. Learn. Knowl. Extr. 4(1), 22–41 (2022)

    Article  Google Scholar 

  15. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. Mach. Learn. 21(140), 1–67 (2020)

    MathSciNet  Google Scholar 

  16. Cao, H., Xie, X., Shi, J., Jiang, G., Wang, Y.: Siamese network-based transfer learning model to predict geogenic contaminated groundwaters. Environ. Sci. Technol. 56(15), 11071–11079 (2022)

    Article  Google Scholar 

  17. Zhu, Q., et al.: Land-use/land-cover change detection based on a siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS J. Photogrammetry Remote Sens. 184, 63–78 (2022)

    Article  Google Scholar 

  18. Daudt, R.C., Le Saux, B., Boulch, A., Gousseau, Y.: Urban change detection for multispectral earth observation using convolutional neural networks. In: International Geoscience and Remote Sensing Symposium, pp. 2115–2118. IEEE, Spain (2018)

    Google Scholar 

  19. Yang, M., Jiao, L., Liu, F., Hou, B., Yang, S.: Transferred deep learning-based change detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(9), 6960–6973 (2019)

    Article  Google Scholar 

  20. Heidari, M., Fouladi-Ghaleh, K.: Using siamese networks with transfer learning for face recognition on small-samples datasets. In: International Conference on Machine Vision and Image Processing (MVIP), pp. 1–4. IEEE, Iran (2020)

    Google Scholar 

  21. Bandara, W.G.C., Patel, V.M.: A transformer-based siamese network for change detection. In: International Geoscience and Remote Sensing Symposium, pp. 207–210. IEEE, Malaysia (2022)

    Google Scholar 

  22. Andresini, G., Appice, A., Dell’Olio, D., Malerba, D.: Siamese networks with transfer learning for change detection in sentinel-2 images. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds.) AIxIA 2021. Lecture Notes in Computer Science, vol. 13196, pp. 478–489. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08421-8_33

    Chapter  Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv: 1312.6114 (2013)

  24. Wang, W., et al.: Anomaly detection of industrial control systems based on transfer learning. Tsinghua Sci. Technol. 26(6), 821–832 (2021)

    Article  Google Scholar 

  25. Philip, K., Dominik, S., Barbara, H.: Novel transfer learning schemes based on Siamese networks and synthetic data. Neural Comput. Appl. 35(11), 8423–8436 (2023)

    Article  Google Scholar 

  26. Loireau, M., et al.: Système d’information sur l’environnement á l’échelle locale (Siel) pour évaluer le risque de désertification: situations comparées circumsahariennes (réseau Roselt). Sci. changements planétaires/Sécheresse 18(4), 328–335 (2007)

    Google Scholar 

  27. Van Delden, H., et al.: User driven application and adaptation of an existing policy support system to a new region. In: 4th International Congress on Environmental Modelling and Software, Barcelona-Spain (2008)

    Google Scholar 

Download references

Acknowledgments

We want to thank the Institute of Arid Regions of Medenine, Tunisia, LESOR (Laboratory of Economics and Rural Societies), for providing the ground truth data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Chouikhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chouikhi, F., Abbes, A.B., Farah, I.R. (2023). Desertification Detection in Satellite Images Using Siamese Variational Autoencoder with Transfer Learning. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer, Cham. https://doi.org/10.1007/978-3-031-41456-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41456-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41455-8

  • Online ISBN: 978-3-031-41456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics