Abstract
This paper proposes a deep transfer learning (TL) model based on Siamese Variational Autoencoder (SVAE) for change detection (CD) in satellite imagery using limited labeled data. The proposed approach has two steps: pre-training the SVAE in the source scene and fine-tuning it for deploying in the target scene for desertification detection. The model was tested using Landsat images from 2001 to 2020 from two study areas in Tunisia’s arid regions. The results were compared with the Siamese Convolutional Neural Network (SCNN) model. Results showed that SVAE outperformed in all metrics with an accuracy of 93%.
Similar content being viewed by others
References
Xiong, Y., Zuo, R.: Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder. Math. Geosci. 54(3), 623–644 (2022)
Rhif, M., Abbes, A.B., Martinez, B., Farah, I.R.: Deep learning models performance for NDVI time series prediction: a case study on northwest Tunisia. In: Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), pp. 9–12. IEEE, Tunisia (2020)
Ferchichi, A., Abbes, A.B., Barra, V., Farah, I.R.: Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: a systematic literature review. Ecol. Inf. 68, 101552 (2022)
Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 1–74 (2021)
Amari, R., Noubigh, Z., Zrigui, S., Berchech, D., Nicolas, H., Zrigui, M.: Deep convolutional neural network for Arabic speech recognition. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawinski, B. (eds.) ICCCI 2022. Lecture Notes in Computer Science, vol. 13501, pp. 120–134. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16014-1_11
Aslan, M.F., Sabanci, K., Durdu, A., Unlersen, M.F.: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian optimization. Comput. Biol. Med. 142, 105244 (2022)
Zerrouki, Y., Harrou, F., Zerrouki, N., Dairi, A., Sun, Y.: Desertification detection using an improved variational autoencoder-based approach through ETM-landsat satellite data. IEEE J. Select. Top. Appl. Earth Observations Remote Sens. 14, 202–213 (2020)
Ran, X., Xu, M., Mei, L., Xu, Q., Liu, Q.: Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation. Neural Netw. 145, 199–208 (2022)
Farah, C., Manel, R., Abbes, A.B., Farah, I.R.: Desertification detection based on landsat time-series images and variational auto-encoder: application in Jeffera, Tunisia. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 3688–3691. IEEE, Malaysia (2022)
Zhao, G., Peng, Y.: Semisupervised SAR image change detection based on a siamese variational autoencoder. Inf. Process. Manage. 59(1), 102726 (2022)
Ghosh, S., Ghosh, S., Kumar, P., Scheme, E., Roy, P.P.: A novel spatio-temporal siamese network for 3d signature recognition. Pattern Recognit. Lett. 144, 13–20 (2021)
Zhang, K.: Content-based image retrieval with a convolutional siamese neural network: distinguishing lung cancer and tuberculosis in CT images. Comput. Biol. Med. 140, 105096 (2022)
Krishnamurthy, S., Srinivasan, K., Qaisar, S.M., Vincent, P.M.D.R., Chang, C.: Evaluating deep neural network architectures with transfer learning for pneumonitis diagnosis. Comput. Math. Methods Med. 2021, 1–12 (2021)
Baker, N.A., Zengeler, N., Handmann, U.: A transfer learning evaluation of deep neural networks for image classification. Mach. Learn. Knowl. Extr. 4(1), 22–41 (2022)
Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. Mach. Learn. 21(140), 1–67 (2020)
Cao, H., Xie, X., Shi, J., Jiang, G., Wang, Y.: Siamese network-based transfer learning model to predict geogenic contaminated groundwaters. Environ. Sci. Technol. 56(15), 11071–11079 (2022)
Zhu, Q., et al.: Land-use/land-cover change detection based on a siamese global learning framework for high spatial resolution remote sensing imagery. ISPRS J. Photogrammetry Remote Sens. 184, 63–78 (2022)
Daudt, R.C., Le Saux, B., Boulch, A., Gousseau, Y.: Urban change detection for multispectral earth observation using convolutional neural networks. In: International Geoscience and Remote Sensing Symposium, pp. 2115–2118. IEEE, Spain (2018)
Yang, M., Jiao, L., Liu, F., Hou, B., Yang, S.: Transferred deep learning-based change detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(9), 6960–6973 (2019)
Heidari, M., Fouladi-Ghaleh, K.: Using siamese networks with transfer learning for face recognition on small-samples datasets. In: International Conference on Machine Vision and Image Processing (MVIP), pp. 1–4. IEEE, Iran (2020)
Bandara, W.G.C., Patel, V.M.: A transformer-based siamese network for change detection. In: International Geoscience and Remote Sensing Symposium, pp. 207–210. IEEE, Malaysia (2022)
Andresini, G., Appice, A., Dell’Olio, D., Malerba, D.: Siamese networks with transfer learning for change detection in sentinel-2 images. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds.) AIxIA 2021. Lecture Notes in Computer Science, vol. 13196, pp. 478–489. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08421-8_33
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv: 1312.6114 (2013)
Wang, W., et al.: Anomaly detection of industrial control systems based on transfer learning. Tsinghua Sci. Technol. 26(6), 821–832 (2021)
Philip, K., Dominik, S., Barbara, H.: Novel transfer learning schemes based on Siamese networks and synthetic data. Neural Comput. Appl. 35(11), 8423–8436 (2023)
Loireau, M., et al.: Système d’information sur l’environnement á l’échelle locale (Siel) pour évaluer le risque de désertification: situations comparées circumsahariennes (réseau Roselt). Sci. changements planétaires/Sécheresse 18(4), 328–335 (2007)
Van Delden, H., et al.: User driven application and adaptation of an existing policy support system to a new region. In: 4th International Congress on Environmental Modelling and Software, Barcelona-Spain (2008)
Acknowledgments
We want to thank the Institute of Arid Regions of Medenine, Tunisia, LESOR (Laboratory of Economics and Rural Societies), for providing the ground truth data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chouikhi, F., Abbes, A.B., Farah, I.R. (2023). Desertification Detection in Satellite Images Using Siamese Variational Autoencoder with Transfer Learning. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer, Cham. https://doi.org/10.1007/978-3-031-41456-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-41456-5_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41455-8
Online ISBN: 978-3-031-41456-5
eBook Packages: Computer ScienceComputer Science (R0)