Skip to main content

DNGAE: Deep Neighborhood Graph Autoencoder for Robust Blind Hyperspectral Unmixing

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2023)

Abstract

Recently, Deep Learning (DL)-based unmixing techniques have gained popularity owing to the robust learning of Deep Neural Networks (DNNs). In particular, the Autoencoder (AE) model, as a baseline network for unmixing, performs well in Hyperspectral Unmixing (HU) by automatically learning a new representation and recovering original data. However, patch-wise AE based architecture, which incorporates both spectral and spatial information through convolutional filters may blur the abundance maps due to the fixed kernel shape of the used window size. To cope with the above issue, we propose in this paper a novel methodology based on graph DL called DNGAE. Unlike the pixel-wise or patch-wise Convolutional AE (CAE), our proposed method incorporates the complementary spatial information based on graph spectral similarity. A neighborhood graph based on band correlations is firstly constructed. Then, our method attempts to aggregate similar spectra from the neighboring pixels of a target pixel. Consequently, this leads to better quality of both extracted endmembers and abundances. Extensive experiments performed on two real HSI benchmarks confirm the effectiveness of our proposed method compared to other DL models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu, J., Wu, Z., Li, Y., Chen, Y., Wei, Z., Wang, W.: Parallel optimization of pixel purity index algorithm for hyperspectral unmixing based on spark. In: Third International Conference on Advanced Cloud and Big Data, Yangzhou, China, pp. 159–166 (2015)

    Google Scholar 

  2. Ayma Quirita, V.A., da Costa, G.A.O.P., Beltrán, C.: A distributed N-FINDR cloud computing-based solution for endmembers extraction on large-scale hyperspectral remote sensing data. Remote Sens. 14(9) (2022)

    Google Scholar 

  3. Alves, J.M.R., Nascimento, J.M.P., Plaza, A., Sanchez, S., Bioucas-Dias, J.M., Silva, V.: Vertex component analysis GPU-based implementation for hyperspectral unmixing. In: 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, China, pp. 1–4 (2012)

    Google Scholar 

  4. Li, J., Agathos, A., Zaharie, D., Bioucas-Dias, J.M., Plaza, A., Li, X.: Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 53(9), 5067–5082 (2015)

    Article  Google Scholar 

  5. Nascimento, J.M.P., Bioucas-Dias, J.M.: Hyperspectral unmixing based on mixtures of dirichlet components. IEEE Trans. Geosci. Remote Sens. 50(3), 863–878 (2012)

    Article  Google Scholar 

  6. Tang, W., Shi, Z., Wu, Y., Zhang, C.: Sparse unmixing of hyperspectral data using spectral a priori information. IEEE Trans. Geosci. Remote Sens. 53(2), 770–783 (2015)

    Article  Google Scholar 

  7. Ayed, M., Hanachi, R., Sellami, A., Farah, I.R., Mura, M.D.: A deep learning approach based on morphological profiles for Hyperspectral Image unmixing. In: 6th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sfax, Tunisia, pp. 1–6 (2022)

    Google Scholar 

  8. Su, Y., Marinoni, A., Li, J., Plaza, A., Gamba, P.: Nonnegative sparse autoencoder for robust endmember extraction from remotely sensed hyperspectral images. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, pp. 205–208 (2017)

    Google Scholar 

  9. Palsson, F., Sigurdsson, J., Sveinsson, J.R., Ulfarsson, M.O.: Neural network hyperspectral unmixing with spectral information divergence objective. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, pp. 755–758 (2017)

    Google Scholar 

  10. Ozkan, S., Kaya, B., Akar, G.B.: EndNet: sparse AutoEncoder network for endmember extraction and hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 57(1), 482–496 (2019)

    Article  Google Scholar 

  11. Su, Y., Li, J., Plaza, A., Marinoni, A., Gamba, P., Chakravortty, S.: DAEN: deep autoencoder networks for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 57(7), 4309–4321 (2019)

    Article  Google Scholar 

  12. Qu, Y., Qi, H.: uDAS: an untied denoising autoencoder with sparsity for spectral unmixing. IEEE Trans. Geosci. Remote Sens. 57(3), 1698–1712 (2019)

    Article  Google Scholar 

  13. Palsson, B., Sveinsson, J.R., Ulfarsson, M.O.: Spectral-spatial hyperspectral unmixing using multitask learning. IEEE Access 7, 148861–148872 (2019)

    Article  Google Scholar 

  14. Zhang, X., Sun, Y., Zhang, J., Wu, P., Jiao, L.: Hyperspectral unmixing via deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 15(11), 1755–1759 (2018)

    Article  Google Scholar 

  15. Palsson, B., Ulfarsson, M.O., Sveinsson, J.R.: Convolutional autoencoder for spectral-spatial hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 59(1), 535–549 (2019)

    Article  Google Scholar 

  16. Rasti, B., Koirala, B., Scheunders, P., Ghamisi, P.: UnDIP: hyperspectral unmixing using deep image prior. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)

    Google Scholar 

  17. Gao, L., Han, Z., Hong, D., Zhang, B., Chanussot, J.: CyCU-Net: cycle-consistency unmixing network by learning cascaded autoencoders. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

    Google Scholar 

  18. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2021)

    Article  MathSciNet  Google Scholar 

  19. Kipf, T., Welling, M.: Variational Graph Auto-Encoders. arXiv (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refka Hanachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanachi, R., Sellami, A., Farah, I.R., Mura, M.D. (2023). DNGAE: Deep Neighborhood Graph Autoencoder for Robust Blind Hyperspectral Unmixing. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer, Cham. https://doi.org/10.1007/978-3-031-41456-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41456-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41455-8

  • Online ISBN: 978-3-031-41456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics