Skip to main content

Reconstruction of Broken Writing Strokes in Greek Papyri

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2023 Workshops (ICDAR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14193))

Included in the following conference series:

  • 959 Accesses

Abstract

In the recent years, there has been an increased trend to digitize the historical manuscripts. This, in addition to preservation of these valuable collections, also allows public access to the digitized versions thus providing opportunities for researchers in pattern classification to develop computerized techniques for various applications. A common pre-processing step in such applications is the restoration of missing or broken strokes and makes the subject of our current study. More specifically, we work on isolated Greek characters extracted from handwriting on papyrus and employ a denoising auto-encoder to reconstruct the missing parts of characters. Performance evaluation using multiple evaluation metrics reports promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arun, E., Vinith, J., Pattar, C., George, K.: Improving Kannada OCR using a stroke-based approach. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), pp. 1611–1615 (2019). https://doi.org/10.1109/TENCON.2019.8929606

  2. Arvind, K., Kumar, J., Ramakrishnan, A.: Line removal and restoration of handwritten strokes. In: International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), vol. 3, pp. 208–214. IEEE (2007)

    Google Scholar 

  3. Assael, Y.: Restoring and attributing ancient texts using deep neural networks. Nature 603(7900), 280–283 (2022)

    Article  Google Scholar 

  4. Baird, H.S., Govindaraju, V., Lopresti, D.P.: Document analysis systems for digital libraries: challenges and opportunities. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 1–16. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28640-0_1

    Chapter  Google Scholar 

  5. Castellanos, F.J., Gallego, A.J., Calvo-Zaragoza, J.: Unsupervised neural domain adaptation for document image binarization. Pattern Recognit. 119, 108099 (2021)

    Article  Google Scholar 

  6. Hanif, M., et al.: Blind bleed-through removal in color ancient manuscripts. Multimed. Tools Appl. 82, 1–15 (2022)

    MathSciNet  Google Scholar 

  7. Ho, L.T., Tran, S.T., Dinh, D.: Nom document background removal using generative adversarial network. In: 2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 100–104. IEEE (2021)

    Google Scholar 

  8. Huang, Z., Heng, W., Tao, Y., Zhou, S.: Stroke-based character reconstruction. arXiv preprint arXiv:1806.08990 (2018)

  9. Liu, R., et al.: SCCGAN: style and characters inpainting based on CGAN. Mobile Netw. Appl. 26, 3–12 (2021)

    Article  Google Scholar 

  10. Melnik, G., Yekutieli, Y., Sharf, A.: Deep segmentation of corrupted glyphs. ACM J. Comput. Cult. Heritage (JOCCH) 15(1), 1–24 (2022)

    Article  Google Scholar 

  11. Mohammed, H., Marthot-Santaniello, I., Märgner, V.: GRK-Papyri: a dataset of Greek handwriting on papyri for the task of writer identification. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 726–731. IEEE (2019)

    Google Scholar 

  12. Mosa, Q.O., Nasrudin, M.F.: Broken character image restoration using genetic snake algorithm: deep concavity problem. J. Comput. Sci. 12(2), 81–87 (2016)

    Article  Google Scholar 

  13. Nguyen, K.C., Nguyen, C.T., Hotta, S., Nakagawa, M.: A character attention generative adversarial network for degraded historical document restoration. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 420–425. IEEE (2019)

    Google Scholar 

  14. Raha, P., Chanda, B.: Restoration of historical document images using convolutional neural networks. In: 2019 IEEE Region 10 Symposium (TENSYMP), pp. 56–61. IEEE (2019)

    Google Scholar 

  15. Rani, N.S., Nair, B.B., Chandrajith, M., Kumar, G.H., Fortuny, J.: Restoration of deteriorated text sections in ancient document images using a tri-level semi-adaptive thresholding technique. Automatika 63(2), 378–398 (2022)

    Article  Google Scholar 

  16. Sober, B., Levin, D.: Computer aided restoration of handwritten character strokes. Comput. Aided Des. 89, 12–24 (2017)

    Article  MathSciNet  Google Scholar 

  17. Sulaiman, A., Omar, K., Nasrudin, M.F.: Degraded historical document binarization: a review on issues, challenges, techniques, and future directions. J. Imaging 5(4), 48 (2019)

    Article  Google Scholar 

  18. Wadhwani, M., Kundu, D., Chakraborty, D., Chanda, B.: Text extraction and restoration of old handwritten documents. In: Mukhopadhyay, J., Sreedevi, I., Chanda, B., Chaudhury, S., Namboodiri, V.P. (eds.) Digital Techniques for Heritage Presentation and Preservation, pp. 109–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57907-4_6

    Chapter  Google Scholar 

  19. Xiong, W., Jia, X., Yang, D., Ai, M., Li, L., Wang, S.: DP-LinkNet: a convolutional network for historical document image binarization. KSII Trans. Internet Inf. Syst. (TIIS) 15(5), 1778–1797 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javaria Amin , Imran Siddiqi or Momina Moetesum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amin, J., Siddiqi, I., Moetesum, M. (2023). Reconstruction of Broken Writing Strokes in Greek Papyri. In: Coustaty, M., Fornés, A. (eds) Document Analysis and Recognition – ICDAR 2023 Workshops. ICDAR 2023. Lecture Notes in Computer Science, vol 14193. Springer, Cham. https://doi.org/10.1007/978-3-031-41498-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41498-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41497-8

  • Online ISBN: 978-3-031-41498-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics