Skip to main content

Optical Music Recognition: Recent Advances, Current Challenges, and Future Directions

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2023 Workshops (ICDAR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14193))

Included in the following conference series:

  • 789 Accesses

Abstract

Optical Music Recognition (OMR) is an interdisciplinary field that aims to automate the process of transcribing sheet music into a digital format. Over the past few years, significant progress has been made in developing OMR systems that can recognize musical symbols with high accuracy. However, completing the pipeline of OMR remains a challenging endeavor due to the complexity and variability of music notation, and there are several open challenges that need to be addressed. In this position paper, we provide an overview of the current state-of-the-art in OMR through the two main lines of research. We include the problems that have been recently addressed and the techniques that have been considered. We then identify the key challenges that remain, such as learning to reconstruct the music notation, recognizing multiple voices, or dealing with artifacts such as lyrics. Finally, we suggest some possible directions for future research. We argue that addressing these challenges is crucial to making OMR a more practical and useful tool for musicians, scholars, and librarians alike.

Work produced with the support of a 2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. The Foundation takes no responsibility for the opinions, statements and contents of this project, which are entirely the responsibility of its authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardes, A., Ponce, J., LeCun, Y.: Vicreg: variance-invariance-covariance regularization for self-supervised learning. In: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022 (2022)

    Google Scholar 

  2. Baró, A., Riba, P., Calvo-Zaragoza, J., Fornés, A.: From optical music recognition to handwritten music recognition: a baseline. Pattern Recognit. Lett. 123, 1–8 (2019)

    Article  Google Scholar 

  3. Baró, A., Riba, P., Fornés, A.: Musigraph: optical music recognition through object detection and graph neural network. In: Porwal, U., Fornés, A., Shafait, F. (eds.) Frontiers in Handwriting Recognition - 18th International Conference, ICFHR 2022, Proceedings. Lecture Notes in Computer Science, Hyderabad, India, 4–7 December 2022, vol. 13639, pp. 171–184. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-21648-0_12

  4. Baró, A., Badal, C., Fornés, A.: Handwritten historical music recognition by sequence-to-sequence with attention mechanism. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 205–210 (2020)

    Google Scholar 

  5. Calvo-Zaragoza, J., Jr, J.H., Pacha, A.: Understanding optical music recognition. ACM Comput. Surv. (CSUR) 53(4), 1–35 (2020)

    Google Scholar 

  6. Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Handwritten music recognition for mensural notation with convolutional recurrent neural networks. Pattern Recogn. Lett. 128, 115–121 (2019)

    Article  Google Scholar 

  7. Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Hybrid hidden Markov models and artificial neural networks for handwritten music recognition in mensural notation. Pattern Anal. Appl. 22(4), 1573–1584 (2019)

    Article  MathSciNet  Google Scholar 

  8. Castellanos, F.J., Calvo-Zaragoza, J., Inesta, J.M.: A neural approach for full-page optical music recognition of mensural documents. In: Proceedings of the 21st International Society for Music Information Retrieval Conference, pp. 558–565. ISMIR, Montreal (2020)

    Google Scholar 

  9. Castellanos, F.J., Calvo-Zaragoza, J., Vigliensoni, G., Fujinaga, I.: Document analysis of music score images with selectional auto-encoders. In: Proceedings of the 19th International Society for Music Information Retrieval Conference, pp. 256–263 (2018)

    Google Scholar 

  10. Castellanos, F.J., Garrido-Munoz, C., Ríos-Vila, A., Calvo-Zaragoza, J.: Region-based layout analysis of music score images. Expert Syst. Appl. 209, 118211 (2022)

    Article  Google Scholar 

  11. Coquenet, D., Chatelain, C., Paquet, T.: Dan: a segmentation-free document attention network for handwritten document recognition. IEEE Trans. Pattern Anal. Mach. Intell. 45, 8227–8243 (2023)

    Google Scholar 

  12. Fujinaga, I., Vigliensoni, G.: The art of teaching computers: the SIMSSA optical music recognition workflow system. In: 27th European Signal Processing Conference, EUSIPCO 2019, A Coruña, Spain, 2–6 September 2019, pp. 1–5. IEEE (2019)

    Google Scholar 

  13. Garrido-Munoz, C., Ríos-Vila, A., Calvo-Zaragoza, J.: A holistic approach for image-to-graph: application to optical music recognition. Int. J. Doc. Anal. Recognit. 25(4), 293–303 (2022)

    Article  Google Scholar 

  14. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the Twenty-Third International Conference on Machine Learning, (ICML 2006), Pittsburgh, Pennsylvania, USA, 25–29 June 2006, pp. 369–376 (2006)

    Google Scholar 

  15. Hajic, J., Pecina, P.: The MUSCIMA++ dataset for handwritten optical music recognition. In: 14th IAPR International Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, 9–15 November 2017, pp. 39–46. IEEE (2017)

    Google Scholar 

  16. Huang, Z., Jia, X., Guo, Y.: State-of-the-art model for music object recognition with deep learning. Appl. Sci. 9(13), 2645 (2019)

    Article  Google Scholar 

  17. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what you read: non-recurrent handwritten text-line recognition. Pattern Recogn. 129, 108766 (2022)

    Article  Google Scholar 

  18. Konwer, A., et al.: Staff line removal using generative adversarial networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1103–1108. IEEE (2018)

    Google Scholar 

  19. Li, M., et al.: Trocr: transformer-based optical character recognition with pre-trained models (2021). arXiv preprint arXiv:2109.10282

  20. Pacha, A., Calvo-Zaragoza, J., Hajic Jr., J.: Learning notation graph construction for full-pipeline optical music recognition. In: Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019, Delft, The Netherlands, 4–8 November 2019, pp. 75–82 (2019)

    Google Scholar 

  21. Pacha, A., Choi, K.Y., Coüasnon, B., Ricquebourg, Y., Zanibbi, R., Eidenberger, H.: Handwritten music object detection: open issues and baseline results. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 163–168. IEEE (2018)

    Google Scholar 

  22. Pacha, A., Hajič, J., Jr., Calvo-Zaragoza, J.: A baseline for general music object detection with deep learning. Appl. Sci. 8(9), 1488 (2018)

    Article  Google Scholar 

  23. Paul, A., Pramanik, R., Malakar, S., Sarkar, R.: An ensemble of deep transfer learning models for handwritten music symbol recognition. Neural Comput. Appl. 34(13), 10409–10427 (2022)

    Article  Google Scholar 

  24. Ríos-Vila, A., Iñesta, J.M., Calvo-Zaragoza, J.: On the use of transformers for end-to-end optical music recognition. In: Pattern Recognition and Image Analysis: 10th Iberian Conference, IbPRIA 2022, Aveiro, Portugal, 4–6 May 2022, Proceedings, pp. 470–481. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-04881-4_37

  25. Ríos-Vila, A., Esplà-Gomis, M., Rizo, D., Ponce de León, P.J., Iñesta, J.M.: Applying automatic translation for optical music recognition’s encoding step. Appl. Sci. 11(9), 3890 (2021)

    Google Scholar 

  26. Ríos-Vila, A., Inesta, J.M., Calvo-Zaragoza, J.: End-to-end full-page optical music recognition for mensural notation. In: Proceedings of the 23rd International Society for Music Information Retrieval Conference, pp. 226–232. ISMIR, Bengaluru (2022)

    Google Scholar 

  27. Torras, P., Baró, A., Kang, L., Fornés, A.: On the integration of language models into sequence to sequence architectures for handwritten music recognition. In: Proceedings of the 22nd International Society for Music Information Retrieval Conference, pp. 690–696 (2021)

    Google Scholar 

  28. Tuggener, L., Elezi, I., Schmidhuber, J., Pelillo, M., Stadelmann, T.: Deepscores-a dataset for segmentation, detection and classification of tiny objects. In: 24th International Conference on Pattern Recognition, ICPR 2018, Beijing, China, 20–24 August 2018, pp. 3704–3709. IEEE Computer Society (2018)

    Google Scholar 

  29. Tuggener, L., Satyawan, Y.P., Pacha, A., Schmidhuber, J., Stadelmann, T.: The deepscoresv2 dataset and benchmark for music object detection. In: 25th International Conference on Pattern Recognition, ICPR 2020, Virtual Event/Milan, Italy, 10–15 January 2021, pp. 9188–9195. IEEE (2020)

    Google Scholar 

  30. van der Wel, E., Ullrich, K.: Optical music recognition with convolutional sequence-to-sequence models. In: Cunningham, S.J., Duan, Z., Hu, X., Turnbull, D. (eds.) Proceedings of the 18th International Society for Music Information Retrieval Conference, pp. 731–737 (2017)

    Google Scholar 

  31. Wen, C., Zhu, L.: A sequence-to-sequence framework based on transformer with masked language model for optical music recognition. IEEE Access 10, 118243–118252 (2022)

    Article  Google Scholar 

  32. Wick, C., Puppe, F.: Experiments and detailed error-analysis of automatic square notation transcription of medieval music manuscripts using cnn/lstm-networks and a neume dictionary. J. New Music Res. 50(1), 18–36 (2021)

    Article  Google Scholar 

  33. Wick, C., Hartelt, A., Puppe, F.: Staff, symbol and melody detection of medieval manuscripts written in square notation using deep fully convolutional networks. Appl. Sci. 9(13), 2646 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Calvo-Zaragoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calvo-Zaragoza, J., Martinez-Sevilla, J.C., Penarrubia, C., Rios-Vila, A. (2023). Optical Music Recognition: Recent Advances, Current Challenges, and Future Directions. In: Coustaty, M., Fornés, A. (eds) Document Analysis and Recognition – ICDAR 2023 Workshops. ICDAR 2023. Lecture Notes in Computer Science, vol 14193. Springer, Cham. https://doi.org/10.1007/978-3-031-41498-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41498-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41497-8

  • Online ISBN: 978-3-031-41498-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics