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Abstract. Dynamic task assignment involves assigning arriving tasks
to a limited number of resources in order to minimize the overall cost
of the assignments. To achieve optimal task assignment, it is neces-
sary to model the assignment problem first. While there exist separate
formalisms, specifically Markov Decision Processes and (Colored) Petri
Nets, to model, execute, and solve different aspects of the problem, there
is no integrated modeling technique. To address this gap, this paper pro-
poses Action-Evolution Petri Nets (A-E PN) as a framework for modeling
and solving dynamic task assignment problems. A-E PN provides a uni-
fied modeling technique that can represent all elements of dynamic task
assignment problems. Moreover, A-E PN models are executable, which
means they can be used to learn close-to-optimal assignment policies
through Reinforcement Learning (RL) without additional modeling ef-
fort. To evaluate the framework, we define a taxonomy of archetypical
assignment problems. We show for three cases that A-E PN can be used
to learn close-to-optimal assignment policies. Our results suggest that
A-E PN can be used to model and solve a broad range of dynamic task
assignment problems.

Keywords: Petri Nets, Dynamic Assignment Problem, Business Pro-
cess Optimization, Markov Decision Processes, Reinforcement Learning

1 Introduction

During the execution of a business process, tasks become executable and re-
sources become available to execute these tasks. As resources are assigned to
tasks, they become unavailable to execute other tasks. Consequently, continu-
ously assigning the right task to the right resource is essential to run a process
efficiently. This problem is known as dynamic task assignment. The dynamic task
assignment problem can be seen as a particular case of the dynamic assignment
problem, which, according to [1], is the problem of assigning a fixed number of
individuals to a sequence of tasks, such as to minimize the total cost of the allo-
cations, which may include setup costs, travel costs, or other time-varying costs.
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This problem has been extensively studied in business process optimization [2] as
well as related areas, such as manufacturing [3]. For the sake of brevity, we will
employ the term “assignment problem” to indicate the general dynamic (task)
assignment problem.

To solve an assignment problem, it must first be modeled mathematically.
Markov Decision Processes (MDPs) are a common technique for modeling as-
signment problems [4], and they are the standard interface for Reinforcement
Learning (RL) algorithms [5]. The basic definition of MDP involves a single
agent interacting with an environment to maximize a cumulative reward, which
is a global signal of the goodness of the actions chosen by the agent during a
(possibly infinite) sequence of system states. In the context of business process
optimization, the environment is the business process that must be executed,
and the agent decides which task to assign to which resource. The reward is
calculated based on what we want to optimize in the process, such as the total
time resources spend working, the total cost of employing the resources, or the
time customers spend waiting. While MDPs provide a good formalism for model-
ing the agent’s behavior, they consider the environment, in our case the business
process, as a black box that provides rewards for the decisions taken by the agent
without exposing its internal behavior. Moreover, they do not have an agreed-
upon syntax and lack any type of graphical representation. On the other hand,
(Colored) Petri Nets [6] are a well-known formalism for modeling a business
process but have no inherent mechanisms for modeling and calculating the best
decision in a given situation. Also, frameworks exist for many mathematical op-
timization techniques, such as linear programming and constraint programming,
where problems can be modeled and solved without additional effort. However,
no such framework exists for dynamic task assignment problems.

To fill this gap, this paper presents a unified and executable framework for
modeling assignment problems. We use the term “unified” to refer to the ca-
pability of expressing both the agent and the environment of the assignment
problem in a single standardized notation, thus simplifying the modeling of new
problems. We use the term “executable” to refer to the possibility of using the
models to train and test decision-making algorithms (specifically RL algorithms)
without additional effort. To this end, we propose a new artifact in the form of
a modeling language with a solid mathematical foundation, namely A-E Petri
Net (A-E PN), which draws from the well-known Petri Net (PN) formalism to
model assignment problems in a readable and executable manner. This paper
pays particular attention to embedding the A-E PN formalism in the RL cycle,
such that RL algorithms can be trained and used to solve assignment problems
without additional effort.

The proposed artifact is evaluated by modeling and solving a set of archetyp-
ical assignment problems. A taxonomy of assignment problem variants is pro-
posed, and an example for each of the three main variants is modeled through
A-E PN. An RL algorithm is trained on each instance, achieving close-to-optimal
results. Apart from modeling each assignment problem as an A-E PN, no addi-
tional effort is required to achieve these results, empirically demonstrating that



Action-Evolution Petri Nets 3

A-E PN constitutes a unified and executable framework for modeling and solving
assignment problems.

Against this background, the remainder of this paper is structured as follows.
Section 2 is dedicated to a review of relevant literature. Section 3 introduces
Timed-Arc Colored Petri Nets (T-A CPN). Section 4 is devoted to the formal
definition of Action-Evolution Petri Net and the description of the integration of
A-E PN in the classic RL loop. In section 5, an essential taxonomy of assignment
problem variants is presented. A problem instance for each variant is modeled
through A-E PN, and a RL algorithm is trained on each instance, obtaining
close-to-optimal results. Section 6 discusses the proposed method’s benefits and
limitations and delineates the next research steps.

2 Related work

To the best of our knowledge, this paper presents the first attempt at defining
a unified and executable framework for assignment problems. In contrast, the
relation between (generalized stochastic) Petri Nets and Markov Chains is well
studied [7], but Markov Chains cannot be used to model and optimize (task as-
signment) decisions. Since Markov Decision Processes can be seen as an extension
to Markov Chains, the idea of extending Petri Nets to model Markov Decision
Processes follows naturally. Several attempts at this exist in the literature, but
none focus on the assignment problem. An overview of existing frameworks for
modeling and solving dynamic optimization problems is presented in Table 1,
listing, for each framework, the Petri Net variant employed, the scope of appli-
cability, and whether the framework is unified and executable. The current work
is presented in the last line.

Table 1. Comparison of existing frameworks for dynamic optimization.

Reference PN Scope Unified Executable

[8] FPN Problems expressible as finite MDPs Yes Yes*
[9] DPN Problems expressible as finite MDPs No Yes
[10] GSPN A single power management problem Yes No
[11] TCPN A single manufacturing scheduling problem Yes No
[12] TCPN Manufacturing scheduling problems Yes No
This paper A-E PN Assignment problems Yes Yes

* No executable example is provided.

In [8], the authors define a CPN variant: Factored Petri Net (FPN). In FPNs,
the transition probabilities are defined explicitly, and a reward is attached to each
network state. A limitation of [8] is that actions must be input marks from a
single source transition (a transition without input arcs), while our framework
allows actions to be defined anywhere in the Petri net, thus allowing for more
modeling flexiblity.
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In [9], the authors propose the Decision Petri Net (DPN) formalism. In DPN,
the network is partitioned into a probabilistic network, in which transition prob-
abilities are determined on arcs, and a non-deterministic network, corresponding
to the actions that can be taken at a given moment by the decision maker. In our
framework, we remove the need for two separate subnets and model the agents
as tokens in the network, obtaining a unified representation. Both [8], and [9]
require the number of states in the system to be finite, whereas our approach
does not rely on states enumeration.

In [10], the authors propose a model for a power-managed distributed com-
puting system that is based on the Generalized Stochastic Petri Net (GSPN)
formalism and provide a translation to the equivalent continuous-time MDP.
The work demonstrates the expressive power of PN variants, but the resulting
model is not executable. Also, the paper presents a single case study, while our
approach is demonstrated to be generally applicable to modeling and solving
problems with different characteristics.

In [11], a manufacturing scheduling problem is modeled using Timed Colored
Petri Nets (TCPN). The search for an optimal policy is implemented using Q-
learning, where each action corresponds to a complete schedule, which is a path
from the initial marking to a final marking of the TCPN representing the system,
whereas in our case, an action corresponds to a single assignment, which allows
for more flexible modeling of decisions. Moreover, [11] only covers a single case
study, relying heavily on problem-specific heuristics.

In [12], the authors provide an example usage of TCPN in the context of
manufacturing systems, focusing on reinforcement learning as solving approach.
While [12] highlights the relationship between TCPN and RL, TCPNs are used
only to describe the environment and not to train or test solving algorithms. In
contrast, our work provides a unified and executable framework.

3 Preliminaries

This section provides the formal definition of Colored Petri Net (CPN) and
Timed-Arc Colored Petri Net (T-A CPN), which will be used to define the new
formalism.

Colored Petri Net (CPN) [6] is an extension of Petri Nets (PN) in which to-
kens have different characteristics called colors. In the remainder of this section,
we rely on the CPN definition provided in [13].

Definition 1 (Colored Petri Net). A CPN is defined as a tuple CPN =
(E , P, T, F,C,G,E, I), such that:

– E is a finite set of types called color sets. Each color set must be finite and
non-empty.

– P is a finite set of places.
– T is a finite set of transitions, such that P ∩ T = ∅
– F ⊆ P × T ∪ T × P is a finite set of arcs.
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– C : P → E is a color function that maps each place p into a set of possible
token colors. Each token on p must have a color that belongs to the type
C(p), which is called the place’s color set.

– G is a guard function. It is defined from T into expressions such that for
each t ∈ T , G(t) is a Boolean expression and Type(V ar(G(t))) ⊆ E, where
Type(x) denotes the type of x and V ar(f) denotes the set of free variables
in the function f .

– E is an arc expression function. It is defined from F into expressions such
that for each f ∈ F , Type(E(f)) = C(P (f))MS and Type(V ar(E(f))) ⊆ E
where P (f) is the place of f . This means that each evaluation of the arc
expression must yield a multi-set (indicated by the MS subscript) over the
color set attached to the corresponding place.

– I is an initialization function. It is defined from P into expressions such that
∀p ∈ P : Type(I(p)) = C(p)MS. The initialization function determines the
network’s initial marking.

Definition 2 (Marking). A marking of a CPN is a function M , such that for
each place p ∈ P , it defines a multi-set of colors C(p) → N, which maps each
possible color of the place to the number of times it occurs.

For a place p with colors C(p) = {c1, c2}, we also write M(p) = cn1 c
m
2 to

denote that p has n) token with color c1 and m tokens with color c2. Since a
marking is a multi-set, multi-set operations, such as ≥, +, and −, are available
on markings.

Definition 3 (Binding). For a transition t, the variables V ar(t) =
V ar(G(t))∪{V ar(E(f))|f ∈ F, T (f) = t} represent the set of variables from the
guard function and the expressions on its arcs, where T (f) is the transition of
arc f .

A binding of a transition t ∈ T is a function Y that maps each v ∈ V ar(t) to
a color, such that ∀v ∈ V ar(v) : Y (v) ∈ Type(v) and G(t)⟨Y ⟩ evaluates to true,
where f⟨Y ⟩ denotes the evaluation of a function f with its free variables bound
as Y .

For a transition t with variables V ar(t) = {v1, v2}, we also write Y (t) =
⟨v1 = c1, v2 = c2⟩ to denote that the binding Y assigns color c1 to variable v1
and color c2 to variable v2.

We now define the behavior of a CPN through its firing rules.

Definition 4 (CPN Firing Rules).

1. A transition t is enabled in marking M for binding Y if and only if ∀(p, t) ∈
F : M(p) ≥ E((p, t))⟨Y ⟩.

2. An enabled transition can fire, changing the Marking M into a marking M ′,
such that ∀p ∈ P : M ′(p) = M(p)− E((p, t))⟨Y ⟩+ E((t, p))⟨Y ⟩.

The standard CPN definition assumes that the effect of a firing is always
instantaneous. To account for time, we will refer to a modified version of the
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Timed-Arc Petri Net (T-A PN) formulation [14]. Our version defines a global
clock, updated according to a next-event time progression. This is also the time
management paradigm implemented in CPN Tools [15], a widely adopted soft-
ware for Petri Nets modeling.

Definition 5 (Timed-Arc Colored Petri Net). A T-A CPN is defined by
a tuple TACPN = (E , P, T, F,C,G,E, I), where P, T, F,C,G, I are as in Defi-
nition 1, and E and E are adapted as follows:

– E is a finite set of timed types called timed color sets. A color of a timed
color set has both a value v and a time τ , we also denote this as v@τ .

– E is an arc expression function. It is defined from F into tuples of two
elements. For a given f ∈ F , E(f)0 is defined the same as E in Definition 1
and E(f)1 is a scalar increment, thus ∀f ∈ F : Type(E(f)1) = N, that
indicates the generated tokens’ time with reference to the global clock. The
second tuple element is ignored for arcs outgoing from places and incoming
to transitions since the scalar increment is only used when producing new
tokens.

Note that each color now has a time and consequently, each color in a marking
and in a binding has time. For example, we can refer to the marking of a place
p with M(p) = c1@21c1@35 as the marking that has one token with color c1 at
time 2 and five tokens with color c1 at time 3. With some abuse of notation, we
will allow arc expression functions E(f)0, to ignore the time element of colors
and leave it unaffected, and we will denote with c@e that an expression e only
changes the time element of a timed color.

We also extend the concept of marking to account for the presence of a global
clock, which we need further on in the paper to define the transition rules for
A-E PN.

Definition 6 (Timed Marking). A timed marking is defined as the tuple
TM = (M, τ), where M is a marking and τ is the current value of the global
clock.

The T-A CPN firing rule can then be expressed as follows:

Definition 7 (T-A CPN Firing Rules).

1. Let t be a transition that is enabled in marking M for binding Y = ⟨v1 =
c1@τ1, v2 = c2@τ2, . . . , vn = cn@τn⟩ as in Definition 4 (using only E0 for
E). The enabling time of the transition, denoted τE, is max(τ1, τ2, . . . , τn).

2. An enabled transition t is time-enabled in timed marking (M, τ), if its en-
abling time τE is less than or equal to τ , and there exists no transition t′ that
is enabled in marking M for some binding Y ′ with enabling time τ ′E ≤ τE.

3. A transition t that is time-enabled in timed marking (M, τ) for binding Y
with enabling time τE can fire, changing the timed marking to (M ′, τE),
where M ′ is constructed, such that ∀p ∈ P : M ′(p) = M(p)−E((p, t))0⟨Y ⟩+
E((t, p))0⟨Y ⟩@τE + E((t, p))1.
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4. When there exists no t in timed marking (M, τ), for which there is a binding
Y , such that t is time-enabled, the global clock τ is increased until there is.

In practice, point 4 can be performed by evaluating bindings that are enabling
but not time-enabling. The binding that leads to the lowest enabling time reveals
the minimal increase of the global clock, making it possible to update the global
clock using a next-event time progression.

4 Action-Evolution Petri Nets

This section extends the definition of T-A CPN to provide a model that can
automatically learn close-to-optimal task assignment policies. This extension
is called Action-Evolution Petri Nets (A-E PN). The new elements are first
described informally, then a formal definition is provided. Finally, the definition
is incorporated into the RL cycle, allowing for automated learning of close-to-
optimal task assignment policies.

4.1 Tags and Rewards

The overall objective of A-E PN is to mimic the behavior of an agent that
observes changes in the environment and acts upon those changes when possible.
We will thus extend the CPN definition provided in the background section to
distinguish two separate types of transitions:

– Actions: transitions that represent actions taken by the agent. In the con-
text of assignment problems, the firing of an action transition represents a
single assignment.

– Evolutions: transitions that represent events happening in the system in-
dependently of the actions taken by the agent. The firing of an evolution
transition represents a single event in the environment, for example, the
arrival of a new order.

This distinction is expressed by associating every transition with a transition
tag, that can be either A (action) or E (evolution), through a transition tag
function L. We also extend the concept of marking to embed a network tag l,
which can assume a single value in {A,E}: only transitions associated with a tag
of the same type as the one in the network tag are allowed to fire. The network tag
l must be updated every time no transitions with the same tag are available for
firing. The tag update function S performs the update by changing the network’s
tag from A to E or vice versa: S(l) = A, if l = E;S(l) = E, if l = A. We use the
term tag time frame to refer to the period between changes in the network tag.

The objective of the RL cycle is the maximization of a cumulative reward
over a (possibly infinite) horizon. To track rewards in A-E PN, we introduce a
transitions reward function R that associates a reward to the firing of any tran-
sition, and we embed the total reward accumulated by firing transitions, which
we call network reward ρ, in the network’s marking. In general, a reward can be
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produced by any change in the environment, regardless of whether an action or
an evolution produced such change. For this reason, a reward is produced due to
the firing of any transition, regardless if the transition is tagged as an action or
an evolution. To comply with the classic RL cycle, rewards associated with evo-
lutions are accumulated and awarded to the last action taken, eventually after
a normalization operation (see subsection 4.3).

To further clarify the basic mechanisms of A-E PN, the example in Fig. 1
provides an overview of a sequence of firings.
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Resources
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Fig. 1. A sequence of firings in a simple task assignment problem.

The network shows the evolution of a system with two types of tasks, a and
b, and two employees, one that can undertake only task a and one that can
undertake only task b. A task of each type arrives at every clock tick, and an
employee is assigned to a task of the same type. Assignments take one clock
tick to complete, and a reward of 1 is produced every time an assignment is
completed. The parentheses on the top right corner contain the components
of the tagged marking that are not directly represented as network elements.
Guard functions and reward functions are associated with single transitions.
Timed tokens and arcs follow the notation introduced in Definition 5. The initial
marking is presented in the dotted square a, in which only E transitions are
enabled. After two firings of transition Arrive, consuming both tokens in the
Arrival place (in any order), no evolution transitions are available, so the tag
is updated, and the system transitions to state b. Notice that the transition
from e to a does not produce a clock update, since actions are available to be
taken at time 0. In b, transition Start is enabled. In this case, the RL agent
would have two available actions: pairing task a with resource a, or pairing task
b with resource b. In this case, both actions will be taken sequentially, in any
order, leading to tagged marking c, while in the general case, choices would have
to be made by a decision algorithm on which assignments to make. In c, the
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network tag is again E, and two transitions are associated with time-enabled
steps: Arrive and Complete. The firing of Arrive produces two new tokens at
time 1 in the Waiting place, while the firing of Complete places two tokens back
in the Resources place at time 1 and generates a network reward increment of 2
units in state d.

4.2 Formal Definition of Action-Evolution Petri Net

To provide a formal definition of A-E PN, we must adapt three definitions from
T-A CPN: the net itself, the marking, and the firing rules.

Definition 8 (Action-Evolution Petri Net). Let T = {A,E} be a finite
set of tags representing actions and evolutions, and S : T → T a network
tag update function. An Action-Evolution Petri Net (A-E PN) is as a tuple
AEPN = (E , P, T, F,C,G,E, I, L, lo,R, ρ0), where E , P, T, F,C,G,E, I follow
Definition 5, and:

– L : T → T is a transition tag function that maps each transition t to a single
tag. Only transitions associated with the same tag as the network can fire.

– l0 ∈ T is a singleton containing the network’s initial tag, usually equal to E.

– R : T → (f : R) associates every transition with a reward function. The
function can take timing properties or numbers of tokens (representing com-
pleted cases) as parameters, thus allowing for flexbility in modeling reward.

– ρ0 ∈ R is the initial network reward, usually equal to 0.

Definition 9 (Tagged Marking). A tagged marking is a tuple TM =
(M, l, τ, ρ), where the tuple (M, τ) is a timed marking, as in Definition 6, l ∈ T is
the network tag at the current time τ , and ρ ∈ R is the total reward accumulated
until the current time τ .

Definition 10 (A-E PN Firing Rule).

1. A transition t is tag-enabled in a tagged marking (M, l, τ, ρ) for binding Y if
and only if t is enabled in M according to Definition 1, and L(t) = l.

2. Let t be a transition that is tag-enabled in tagged marking (M, l, τ, ρ) for
binding Y = ⟨v1 = c1@τ1, v2 = c2@τ2, . . . , vn = cn@τn⟩ . The enabling time
of the transition, denoted τE, is max(τ1, τ2, . . . , τn).

3. An enabled transition t is tag-time-enabled in tagged marking TTM =
(M, l, τ, ρ), if its enabling time τE is less than or equal to τ , and there exists
no transition t′ that is enabled in tagged marking TTM for some binding Y ′

with enabling time τ ′E ≤ τE.

4. A transition t that is tag-time-enabled in tagged marking (M, l, τ, ρ) for
binding Y with enabling time τE can fire, changing the tagged marking
to (M ′, l, τE , ρ

′), where M ′ is constructed, such that ∀p ∈ P : M ′(p) =
M(p)− E((p, t))0⟨Y ⟩+ E((t, p))0⟨Y ⟩@τE + E((t, p))1 and ρ′ = ρ+R(t).
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5. When there exists no t in tagged marking TTM = (M, l, τ, ρ), for which
there is a binding Y , such that t is time-enabled, the set of all transitions
is partitioned in two disjoint sets: Tcurrent = {t ∈ T |L(t) = l} and Tnext =
{t ∈ T |L(t) ̸= l}. Let τcurrent be the minimum value for which a transition
in Tcurrent is time-enabled (according to Definition 7), and let τnext be the
minimum value for which a transition in Tnext is time-enabled. Note that
τcurrent and τnext can be undefined.
– If τcurrent is defined, and τcurrent ≤ τnext or τnext is undefined, only

the global clock is updated, leading to a new tagged marking TTM ′ =
(M, l, τcurrent, ρ).

– If τnext is defined, and τcurrent > τnext or τcurrent is undefined, both the
global clock and the network tag are updated, leading to a new tagged
marking TTM ′ = (M,S(l), τnext, ρ).

4.3 Extending the Reinforcement Learning Loop

Having completely defined the characteristics of the A-P PN formalism, we can
clarify how it can be used to learn optimal task assignment policies (i.e. mapping
from observations to assignments) by applying it in a Reinforcement Learning
(RL) cycle. Figure 2 shows the RL cycle. In every step in the cycle, the agent
receives an observation (a representation of the environment’s state), then it
produces a single action that it considers the best action for this observation.
The action leads to a change in the environment’s state. The environment is
responsible for providing a reward for the chosen action along with a new obser-
vation. Then the cycle repeats, and a new decision step takes place. The MDP
formulation is the standard framework for training an agent to take actions that
lead to the highest cumulative reward.

reward 

observation 
action 

Agent

Environment

Fig. 2. A common representation of the RL training cycle [5].

In recent years, the embedding of neural networks in RL algorithms gave birth
to the field of Deep Reinforcement Learning (DRL), achieving breakthroughs in
settings such as playing board games [16] and robotic manipulation [17], as well
as successful applications in domains like industrial process control [18], and
healthcare [19]. With the proliferation of robust DRL algorithms, the main hur-
dle in modeling new problems is the definition of the environment, which is
usually represented as a black box, as in Fig. 2, thus leaving the implementation
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of the system’s dynamics entirely to the modeler. The lack of a standardized in-
terface makes the creation of new environments time-consuming and dependent
on the modeler’s coding skills. Moreover, even introducing small changes poten-
tially requires substantial effort once the environment has been modeled. These
observations motivate the effort to provide a unified and executable framework.
In Fig. 3, the classic RL cycle is extended to account for the presence of A-E
PN. The main element is the A-E PN, which acts as a simulator for the whole
process.

reward 

observation 
action 

Agent

Observation
Manager

Action
Manager

A-E PN

Network

Tag?

marking 
network reward 

E

A

binding 

Environment

Fig. 3. The reinforcement learning cycle with A-E PN

The A-E PN communicates with the agent through two sub-components:
observation manager and action manager. The observation manager is invoked
every time the tagged marking changes, regardless if due to a firing or not. The
new reward is stored, and the network tag is evaluated: if the tag is E, no action
is required, and the control is given back to the A-E PN, which can fire a new
E transition. If the tag is A, the accumulated rewards are added up, and the
result is divided by 1 + (τt+1 − τt). The resulting value is returned to the agent
as rt+1. The reward value takes into account the possible misalignment between
clock ticks (τ) and RL steps (t), given by the fact that multiple actions can
happen at the same τ . The observation manager also returns to the agent the
new observation ot+1. For the set of experiments presented in the next section,
the observation is built as a vector containing, for each place, the number of
tokens of each color in the place’s color set. The action manager is invoked every
time the agent chooses an action at, which it transforms into the corresponding
binding Bt (associated with an action transition) to be fired.

5 Evaluation

This section aims to show that A-E PN constitutes a unified and executable
framework for expressing dynamic task assignment problems with different char-
acteristics: in fact, all the examples were modeled using a single notation (except
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for color-specific functions on arcs, guards, and rewards) and a RL algorithm was
trained on each problem, without any additional development effort.

We provide a (non-exhaustive) taxonomy of assignment problem variants
based on [20]. We distinguish three archetypes of assignment problems.

– Assignment Problem with Compatibilities: resources are assigned to
tasks according to a measure of compatibility. Two problem subclasses can
be formulated:
• Assignment Problem with Hard Compatibilities: resources can
only be assigned to tasks if they are compatible. The dynamic task as-
signment problem in subsection 5.1 falls into this subclass.

• Assignment Problem with Soft Compatibilities: resources can al-
ways be assigned to tasks, but different assignments result in different
system behaviors. An example of such a problem is if multiple resources
can perform a task, but some will be faster at it than others.

– Assignment Problem with Multiple Assignments: the same resource
can be assigned to multiple tasks, or the same task can be assigned to mul-
tiple resources. Two problem subclasses can be formulated:
• Assignment Problem with Resource Capacity: resources have a
maximum capacity of tasks that they can undertake before being con-
sidered full. In the simple case each resource can only be busy with a
single task at a time. The dynamic bin packing problem in subsection
5.2 provides a more elaborate example.

• Assignment Problem with Task Capacity: tasks have a minimum
capacity of resources to be assigned to them before processing. In the
simple case each tasks needs exactly one resource.

– Assignment Problem with Dynamic Resources’ Behavior: resources
have dynamic behavior. Two problem subclasses can be formulated:
• Assignment Problem with Action-Dependent Dynamic Resources’
Behavior: resources change their attribute values as the consequence of
taking actions. The dynamic order-picking problem in subsection 5.3 falls
into this category.

• Assignment Problem with Action-Independent Dynamic Re-
sources’ Behavior: resources change their attribute values as the con-
sequence of evolutions in the environment. For example, resources may
take breaks or go on holidays.

In the following sections, one example is detailed for each archetype. An example
for each subclass is implemented in the provided Python package.

5.1 Dynamic Task Assignment Problem with Hard Compatibilities

Let us consider a system that solves a task assignment problem, similar to the one
presented in Fig. 1. At every clock tick, two tasks arrive: one has type r1 and the
other r2. Two resources are available for the assignment: one can only undertake
tasks of type r1, while the other can undertake tasks of type r1 or r2. Once a
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task is assigned to a resource, completion always takes one clock tick, after which
the resource becomes available for a new assignment. A resource cannot work on
multiple tasks at the same time. A network reward of 1 is returned every time a
task is assigned to a resource and every time an assignment completes, leading
to a theoretical maximum reward of 200 over 100 clock ticks. The problem can
be fully expressed in terms of A-E PN, as reported in Fig. 4.

Y

(X;Y)@+1AX

Resources

Waiting

XE

X

X@+1

Busy

(X;Y)

Y

E

Arrival Arrive

{r1;r2}@0

{r1}@0{r2}@0

{r1}@0

Start Complete

Guard Function: None

Reward Function: F(X) = 0

Guard Function: None

Reward Function: F(X) = 1

Guard Function: compatible(X, Y)

Reward Function: F(X) = 0

Fig. 4. A-E PN initial marking for the dynamic task assignment problem

5.2 Dynamic Bin Packing Problem

In this scenario, we model a dynamic version of the bin packing problem where
items (the problem tasks, characterized by their weight) arrive sequentially and
they must be allocated to two bins (the problem resources, characterized by the
total weight of objects in the bin curr and the bin’s total capacity tot) that are
emptied at every clock tick (except for the first, which is used to generate the
objects to be put in the bins). The fullness of the bins before being emptied gives
the measure of goodness of the object’s allocation, quantified as the weight of
objects in the bin divided by the total bin capacity. This problem showcases how
tokens’ colors can be used to model non-trivial reward functions. In the example
reported, three objects arrive in the system at every clock tick, one of weight 1
and two of weight 2. Two initially empty bins are available, one with capacity
2 and one with capacity 3. The optimal allocation would give a reward of 2,
leading to a theoretical maximum reward of 200 over a 100 clock ticks horizon.
The A-E CPN formalization of the problem is reported in Fig. 5.

5.3 Dynamic Order-Picking Problem

In this section, we present an example of action-dependent resource behavior
(i.e. the agent taking decisions on the actions that it performs). The example is
a simple order-picking problem in which a single agent (the resource) moves on
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{curr: Y.curr+X.weight, tot: Y.tot}

Y
AX

Ready

X@+1E

X

X@+1

Bins

E

Arrival Arrive

{curr: 0, tot: 2}@1

{curr: 0, tot: 3}@1{weight: 2}@0

Assign Empty

Guard Function: None

Reward Function: F(X) = 0

Guard Function: None

Reward Function: F(X) = X.curr/X.tot

Guard Function: Y.tot-Y.curr >= X.weight

Reward Function: F(X) = 0

{weight: 1}@0

X

{curr: 0, tot: X.tot}@+1

Fig. 5. A-E PN initial marking for the dynamic bin packing problem

a squared grid of size 2, trying to pick orders (the tasks). The agent’s and the
orders’ colors are characterized by two parameters representing the coordinates
on the grid (infinite capacity is assumed). The agent starts in position (0, 0) and
can move left, right, up, or down, but not over a diagonal. If an order is in the
same position as the agent, the latter can use an action to pick the order. A
single order arrives at every clock tick, always in position 1, 1, and the order
stays on the grid for exactly one clock tick, according to a time-to-live (TTL)
parameter. The agent’s objective is to pick as many orders as possible, so it gets
a reward of 1 every time an order is picked, leading to a theoretical maximum
reward of 98 over a 100 clock ticks horizon (at least two orders will be lost due
to the agent moving to position (1, 1). The problem is formulated in terms of
A-E PN in Fig. 6.
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Reward Function: F(X) = 1
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Positions

Fig. 6. A-E PN initial marking for the dynamic order-picking problem
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5.4 Experimental Results

All experiments were implemented in a proof-of-concept package1, relying on
the Python programming language and the widely adopted RL library Gym-
nasium [21]. Proximal Policy Optimization (PPO) [22] with masking was used
as the training algorithm. Specifically, the PPO implementation of the Stable
Baselines package [23] is used. Note, however, that the mapping from each A-E
PN to PPO was automated and requires no further effort from the modeler.
The PPO algorithm was trained on each example for (106 steps with 100 clock
ticks per episode, completed in less than 2300 seconds on a mid-range laptop,
without GPUs), always using the default hyperparameters. The experimental
results were computed on (network) rewards obtained by the trained agent and
following a random policy over 1000 trajectories, each of duration 100 clock
ticks. In Table 2, the average and standard deviations of rewards obtained by
the trained PPO are compared to those of a random policy on each of the three
presented problem instances, with reference to the maximum attainable reward.
In all cases, PPO shows to be able to learn a close-to-optimal assignment policy.

Table 2. The results for the three presented problem instances.

Instance Random PPO Optimal

Task Assignment 186.894± 2.084 199.852± 0.398 200
Bin Packing 186.746± 1.941 199.963± 0.186 200
Order Picking 6.046± 2.585 96.776± 2.019 98

6 Conclusions and Future Work

This paper presented a framework for modeling and solving dynamic task assign-
ment problems. To this end, it introduced a new variant of Petri Nets, namely
Action-Evolution Petri Nets (A-E PN), to provide a mathematically sound mod-
eling tool. This formalism was integrated with the Reinforcement Learning (RL)
cycle and consequently with existing algorithms that can solve RL problems.
To evaluate the general applicability of the framework for modeling and solving
task assignment problems, a taxonomy of archetypical problems was introduced,
and working examples were provided. A DRL algorithm was trained on each
implementation, obtaining close-to-optimal policies for each example. This re-
sult shows the suitability of A-E PN as a unified and executable framework for
modeling and solving assignment problems.

While the applicability of the framework was shown, its possibilities and
limitations are yet to be fully explored. This will be done in future research
by expanding the provided taxonomy of assignment problems and considering
different problem classes.

1 The code is publicly available in https://github.com/bpogroup/aepn-project.

https://github.com/bpogroup/aepn-project
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