Skip to main content

A Novel Multi-perspective Trace Clustering Technique for IoT-Enhanced Processes: A Case Study in Smart Manufacturing

  • Conference paper
  • First Online:
Business Process Management (BPM 2023)

Abstract

IoT-enhanced business processes (BPs) are processes supported by Internet of Things (IoT) technology, such as sensors capable of monitoring the physical environment where processes are executed. Although the execution of BPs is typically recorded in event logs, IoT-enhanced BPs also generate IoT data that contain vital contextual information. Such BPs are typically found in manufacturing contexts, where, for instance, temperature sensors can provide valuable insights into the storage conditions of sensitive raw materials. However, the potential of this IoT-enhanced process mining (PM) has not been fully explored. In this paper, we propose TROPIC, an approach for multi-perspective trace clustering that considers three key perspectives: the control-flow perspective, the trace attribute data perspective and the time series sensor data perspective. We demonstrate the efficacy of our approach in a real-world manufacturing use case. The evaluation of the resulting clusters revealed that integrating the three different perspectives enabled the detection of process variants and anomalous instances that would have been missed using any one of the perspectives in isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  2. Banham, A., Leemans, S.J., Wynn, M.T., Andrews, R., Laupland, K.B., Shinners, L.: xPM: enhancing exogenous data visibility. Artif. Intell. Med. 133, 102409 (2022)

    Article  Google Scholar 

  3. Bertrand, Y., De Weerdt, J., Serral, E.: A bridging model for process mining and IoT. In: Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 98–110. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98581-3_8

    Chapter  Google Scholar 

  4. Bertrand, Y., De Weerdt, J., Serral, E.: Assessing the suitability of traditional event log standards for IoT-enhanced event logs. In: In: Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds.) Business Process Management Workshops. BPM 2022. Lecture Notes in Business Information Processing, vol. 460, pp. 63–75. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25383-6_6

  5. Bose, R.J.C., Van der Aalst, W.M.: Context aware trace clustering: towards improving process mining results. In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 401–412. SIAM (2009)

    Google Scholar 

  6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Article  Google Scholar 

  7. De Koninck, P., De Weerdt, J.: Similarity-based approaches for determining the number of trace clusters in process discovery. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 19–42. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55862-1_2

    Chapter  Google Scholar 

  8. De Weerdt, J.: Trace clustering (2019)

    Google Scholar 

  9. De Weerdt, J., Vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE TKDE 25(12), 2708–2720 (2013)

    Google Scholar 

  10. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  11. Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Applying sequence mining for outlier detection in process mining. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 98–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02671-4_6

    Chapter  Google Scholar 

  12. Fulcher, B.D., Little, M.A., Jones, N.S.: Highly comparative time-series analysis: the empirical structure of time series and their methods. J. R. Soc. Interface 10(83), 20130048 (2013)

    Article  Google Scholar 

  13. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Mining expressive process models by clustering workflow traces. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 52–62. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_8

    Chapter  Google Scholar 

  14. Grüger, J., Geyer, T., Kuhn, M., Braun, S.A., Bergmann, R.: Verifying guideline compliance in clinical treatment using multi-perspective conformance checking: a case study. In: ICPM Workshops, pp. 301–313 (2021)

    Google Scholar 

  15. Jablonski, S., Röglinger, M., Schönig, S., Wyrtki, K.M.: Multi-perspective clustering of process execution traces. EMISAJ 14, 2 (2019)

    Google Scholar 

  16. Janiesch, C., et al.: The internet of things meets business process management: a manifesto. IEEE Systems, Man, Cybern. Mag. 6(4), 34–44 (2020)

    Article  Google Scholar 

  17. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  18. Leno, V., Dumas, M., Maggi, F.M., La Rosa, M.: Multi-perspective process model discovery for robotic process automation. In: CAiSE 2018, vol. 2114, pp. 37–45 (2018)

    Google Scholar 

  19. Luengo, D., Sepúlveda, M.: Applying clustering in process mining to find different versions of a business process that changes over time. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 153–158. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_15

    Chapter  Google Scholar 

  20. Lull, J.J., et al.: Exploration with process mining on how temperature change affects hospital emergency departments. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 368–379. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_28

    Chapter  Google Scholar 

  21. MacQueen, J.: Classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California, Los Angeles (1967)

    Google Scholar 

  22. Mannhardt, F.: Multi-perspective process mining. In: BPM (Dissertation/Demos/Industry), pp. 41–45 (2018)

    Google Scholar 

  23. Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.: Balanced multi-perspective checking of process conformance. Computing 98, 407–437 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven process discovery - revealing conditional infrequent behavior from event logs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_34

    Chapter  Google Scholar 

  25. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44(3), 678–693 (2011)

    Article  MATH  Google Scholar 

  26. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  27. Rdusseeun, L., Kaufman, P.: Clustering by means of medoids. In: Proceedings of the Statistical Data Analysis Based on the L1 Norm Conference, vol. 31 (1987)

    Google Scholar 

  28. Rodriguez-Fernandez, V., Trzcionkowska, A., Gonzalez-Pardo, A., Brzychczy, E., Nalepa, G.J., Camacho, D.: Conformance checking for time-series-aware processes. IEEE TII 17(2), 871–881 (2020)

    Google Scholar 

  29. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE TASSP 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  31. Saxena, A., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Article  Google Scholar 

  32. Scheibel, B., Rinderle-Ma, S.: Online decision mining and monitoring in process-aware information systems. In: Ralyte, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) Conceptual Modeling. ER 2022. Lecture Notes in Computer Science, vol. 13607, pp. 271–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2_19

  33. Seiger, R., Franceschetti, M., Weber, B.: An interactive method for detection of process activity executions from IoT data. Future Internet 15(2), 77 (2023)

    Article  Google Scholar 

  34. Seiger, R., Zerbato, F., Burattin, A., García-Bañuelos, L., Weber, B.: Towards IoT-driven process event log generation for conformance checking in smart factories. In: EDOCW 2020, pp. 20–26. IEEE (2020)

    Google Scholar 

  35. Trzcionkowska, A., Brzychczy, E.: Practical aspects of event logs creation for industrial process modelling. MAPE 1(1), 77–83 (2018)

    Google Scholar 

  36. Valderas, P., Torres, V., Serral, E.: Modelling and executing IoT-enhanced business processes through BPMN and microservices. J. Syst. Softw. 184, 111139 (2022)

    Article  Google Scholar 

  37. Valencia Parra, Á., Ramos Gutiérrez, B., Varela Vaca, Á.J., Gómez López, M.T., García Bernal, A.: Enabling process mining in aircraft manufactures: extracting event logs and discovering processes from complex data. In: BPM2019IF (2019)

    Google Scholar 

  38. Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research was supported by the Flemish Fund for Scientific Research (FWO) with grant number G0B6922N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertrand, Y., De Weerdt, J., Serral, E. (2023). A Novel Multi-perspective Trace Clustering Technique for IoT-Enhanced Processes: A Case Study in Smart Manufacturing. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds) Business Process Management. BPM 2023. Lecture Notes in Computer Science, vol 14159. Springer, Cham. https://doi.org/10.1007/978-3-031-41620-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41620-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41619-4

  • Online ISBN: 978-3-031-41620-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics