Skip to main content

The Impact of Process Complexity on Process Performance: A Study Using Event Log Data

  • Conference paper
  • First Online:
Business Process Management (BPM 2023)

Abstract

Complexity is an important characteristic of any business process. The key assumption of much research in Business Process Management is that process complexity has a negative impact on process performance. So far, behavioral studies have measured complexity based on the perception of process stakeholders. The aim of this study is to investigate if such a connection can be supported based on the analysis of event log data. To do so, we employ a set of 38 metrics that capture different dimensions of process complexity. We use these metrics to build various regression models that explain process performance in terms of throughput time. We find that process complexity as captured in event logs explains the throughput time of process executions to a considerable extent, with the respective R-squared reaching up to 0.96. Our study offers implications for empirical research on process performance and can serve as a toolbox for practitioners.

Jan Mendling: The research by Jan Mendling was supported by the Einstein Foundation Berlin under grant EPP-2019-524 and by the German Federal Ministry of Education and Research under grant 16DII133.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/MaxVidgof/process-complexity.

  2. 2.

    https://github.com/MaxVidgof/complexity-data.

  3. 3.

    https://pm4py.fit.fraunhofer.de/.

  4. 4.

    https://en.wikipedia.org/wiki/Standard_Industrial_Classification.

References

  1. Augusto, A., Mendling, J., Vidgof, M., Wurm, B.: The connection between process complexity of event sequences and models discovered by process mining. Inf. Sci. 598, 196–215 (2022). https://doi.org/10.1016/j.ins.2022.03.072

    Article  Google Scholar 

  2. Cappiello, C., Comuzzi, M., Plebani, P., Fim, M.: Assessing and improving measurability of process performance indicators based on quality of logs. Inf. Syst. 103, 101874 (2022). https://doi.org/10.1016/j.is.2021.101874

    Article  Google Scholar 

  3. Cho, M., Song, M., Comuzzi, M., Yoo, S.: Evaluating the effect of best practices for business process redesign: an evidence-based approach based on process mining techniques. Decis. Support Syst. 104, 92–103 (2017)

    Article  Google Scholar 

  4. Cornwell, B.: Social Sequence Analysis: Methods and Applications, vol. 37. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  5. van Dongen, B.B.: BPI challenge 2015 (2015). https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1, https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1

  6. van Dongen, B.: Real-life event logs - hospital log (2011). https://doi.org/10.4121/UUID:D9769F3D-0AB0-4FB8-803B-0D1120FFCF54, https://data.4tu.nl/articles/_/12716513/1

  7. van Dongen, B.: BPI challenge 2017 (2017). https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B, https://data.4tu.nl/articles/_/12696884/1

  8. van Dongen, B.: BPI challenge 2019 (2019). https://doi.org/10.4121/UUID:D06AFF4B-79F0-45E6-8EC8-E19730C248F1, https://data.4tu.nl/articles/_/12715853/1

  9. van Dongen, B.: BPI challenge 2020 (2020). https://doi.org/10.4121/UUID:52FB97D4-4588-43C9-9D04-3604D4613B51, https://data.4tu.nl/collections/_/5065541/1

  10. van Dongen, B., Borchert, F.F.: BPI challenge 2018 (2018). https://doi.org/10.4121/UUID:3301445F-95E8-4FF0-98A4-901F1F204972, https://data.4tu.nl/articles/_/12688355/1

  11. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Cham (2018)

    Book  Google Scholar 

  12. Gibson, C.B., Birkinshaw, J., McDaniel Sumpter, D., Ambos, T.: The hierarchical erosion effect: a new perspective on perceptual differences and business performance. J. Manage. Stud. 56(8), 1713–1747 (2019)

    Article  Google Scholar 

  13. Grisold, T., Wurm, B., Mendling, J., vom Brocke, J.: Using process mining to support theorizing about change in organizations. In: 53rd Hawaii International Conference on System Sciences, HICSS 2020, Maui, Hawaii, USA, 7-10 January 2020, pp. 1–10. ScholarSpace (2020). http://hdl.handle.net/10125/64417

  14. Gunasekaran, A., Nath, B.: The role of information technology in business process reengineering. Int. J. Prod. Econ. 50(2–3), 91–104 (1997)

    Article  Google Scholar 

  15. Günther, C.: Process mining in flexible environments. Ph.D. thesis, Technische Universiteit Eindhoven (2009). https://doi.org/10.6100/IR644335

  16. Hærem, T., Pentland, B.T., Miller, K.D.: Task complexity: extending a core concept. Acad. Manag. Rev. 40(3), 446–460 (2015)

    Article  Google Scholar 

  17. Ketokivi, M.A., Schroeder, R.G.: Perceptual measures of performance: fact or fiction? J. Oper. Manag. 22(3), 247–264 (2004)

    Article  Google Scholar 

  18. Kuhn, M., Johnson, K., et al.: Applied Predictive Modeling, vol. 26. Springer, Cham (2013)

    Book  MATH  Google Scholar 

  19. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. Lecture Notes in Business Information Processing, vol. 6. Springer, Cham (2008)

    Google Scholar 

  20. Mendling, J., Berente, N., Seidel, S., Grisold, T.: The philosopher’s corner: Puralism and pragmatism in the information systems field: the case of research on business processes and organizational routine. ACM SIGMIS Database: DATABASE Adv. Inf. Syst. 52(2), 127–140 (2021)

    Article  Google Scholar 

  21. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines (7pmg). Inf. Softw. Technol. 52(2), 127–136 (2010)

    Article  Google Scholar 

  22. Mendling, J., Sánchez-González, L., García, F., La Rosa, M.: Thresholds for error probability measures of business process models. J. Syst. Softw. 85(5), 1188–1197 (2012)

    Article  Google Scholar 

  23. Münstermann, B., Eckhardt, A., Weitzel, T.: The performance impact of business process standardization. Bus. Process. Manag. J. 16, 29–56 (2010)

    Article  Google Scholar 

  24. Pentland, B.T.: Conceptualizing and measuring variety in the execution of organizational work processes. Manage. Sci. 49(7), 857–870 (2003)

    Article  Google Scholar 

  25. Pentland, B.T., Liu, P., Kremser, W., Hærem, T.: The dynamics of drift in digitized processes. MIS Quart. 44(1) (2020)

    Google Scholar 

  26. Pentland, B.T., Mahringer, C.A., Dittrich, K., Feldman, M.S., Wolf, J.R.: Process multiplicity and process dynamics: weaving the space of possible paths. Organ. Theory 1(3), 2631787720963138 (2020)

    Google Scholar 

  27. Recker, J.: Scientific Research in Information Systems: A Beginner’s Guide, 2nd edn. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85436-2

    Book  Google Scholar 

  28. Schäfermeyer, M., Rosenkranz, C., Holten, R.: The impact of business process complexity on business process standardization. Bus. Inf. Syst. Eng. 4(5), 261–270 (2012)

    Article  Google Scholar 

  29. van der Aalst, W.M.: Process Mining: Data Science in Action, 2nd edn. Springer, Cham (2016)

    Book  Google Scholar 

  30. Vidgof, M., Mendling, J.: Leveraging event data for measuring process complexity. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) Process Mining Workshops - ICPM 2022 International Workshops, Bozen-Bolzano, Italy, 23–28 October 2022, Revised Selected Papers. Lecture Notes in Business Information Processing, vol. 468, pp. 84–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-27815-0_7

  31. Vidgof, M., Mendling, J.: Leveraging event data for measuring process complexity. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) Process Mining Workshops, pp. 84–95. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-27815-0_7

    Chapter  Google Scholar 

  32. Wüllenweber, K., Beimborn, D., Weitzel, T., König, W.: The impact of process standardization on business process outsourcing success. Inf. Syst. Front. 10(2), 211–224 (2008)

    Article  Google Scholar 

  33. Wurm, B., Grisold, T., Mendling, J., vom Brocke, J.: Business process management and routine dynamics. Camb. Handb. Routine Dyn., 513–524 (2021)

    Google Scholar 

  34. Wurm, B., Grisold, T., Mendling, J., vom Brocke, J.: Measuring fluctuations of complexity in organizational routines. In: Academy of Management Proceedings, vol. 2021, p. 13388. Academy of Management Briarcliff Manor, NY 10510 (2021)

    Google Scholar 

  35. Wurm, B., Schmiedel, T., Mendling, J., Fleig, C.: Development of a measurement scale for business process standardization (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Vidgof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidgof, M., Wurm, B., Mendling, J. (2023). The Impact of Process Complexity on Process Performance: A Study Using Event Log Data. In: Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds) Business Process Management. BPM 2023. Lecture Notes in Computer Science, vol 14159. Springer, Cham. https://doi.org/10.1007/978-3-031-41620-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41620-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41619-4

  • Online ISBN: 978-3-031-41620-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics