Skip to main content

Multi-stage Fine-Tuning Deep Learning Models Improves Automatic Assessment of the Rey-Osterrieth Complex Figure Test

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Abstract

The Rey-Osterrieth Complex Figure Test (ROCFT) is a widely used neuropsychological tool for assessing the presence and severity of different diseases. It involves presenting a complex illustration to the patient who is asked to copy it, followed by recall from memory after 3 and 30 min. In clinical practice, a human rater evaluates each component of the reproduction, with the overall score indicating illness severity. However, this method is both time-consuming and error-prone. Efforts have been made to automate the process, but current algorithms require large-scale private datasets of up to 20,000 illustrations. With limited data, training a deep learning model is challenging. This study addresses this challenge by developing a fine-tuning strategy with multiple stages. We show that pre-training on a large-scale sketch dataset with initialized weights from ImageNet significantly reduces the mean absolute error (MAE) compared to just training with initialized weights from ImageNet, e.g., ReXNet-200 from 3.1 to 2.2 MAE. Additionally, techniques such as stochastic weight averaging (SWA) and ensembling of different architectures can further reduce the error to an MAE of 1.97.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arango-Lasprilla, J.C., et al.: Rey-osterrieth complex figure - copy and immediate recall (3 minutes): normative data for Spanish-speaking pediatric populations. NeuroRehabilitation 41(3), 593–603 (2017)

    Google Scholar 

  2. Canham, R.O., Smith, S.L., Tyrrell, A.M.: Automated scoring of a neuropsychological test: the Rey Osterrieth complex figure. In: Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future, pp. 406–413. IEEE Comput. Soc (2000)

    Google Scholar 

  3. Canham, R.O., Smith, S.L., Tyrrell, A.M.: Location of structural sections from within a highly distorted complex line drawing. IEE Proc. Vis. Image Sig. Process. 152(6), 741 (2005)

    Article  Google Scholar 

  4. Conson, M., Siciliano, M., Baiano, C., Zappullo, I., Senese, V.P., Santangelo, G.: Normative data of the Rey-Osterrieth complex figure for Italian-speaking elementary school children. Neurol. Sci. 40(10), 2045–2050 (2019)

    Article  Google Scholar 

  5. Di Febbo, D., et al.: A decision support system for Rey-Osterrieth complex figure evaluation. Expert Syst. Appl. 213, 119226 (2023)

    Article  Google Scholar 

  6. Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Trans. Graph. (Proc. SIGGRAPH) 31(4), 44:1–44:10 (2012)

    Google Scholar 

  7. Han, D., Yun, S., Heo, B., Yoo, Y.: Rethinking channel dimensions for efficient model design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 732–741 (2021)

    Google Scholar 

  8. Han, K., Wang, Y., Zhang, Q., Zhang, W., XU, C., Zhang, T.: Model Rubik’s cube: twisting resolution, depth and width for tinynets. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 19353–19364. Curran Associates, Inc. (2020)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)

    Google Scholar 

  10. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Staff, I. (ed.) 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE, Piscataway (July (2017)

    Google Scholar 

  11. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. In: Silva, R., Globerson, A., Globerson, A. (eds.) 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pp. 876–885. Association For Uncertainty in Artificial Intelligence (AUAI) (2018)

    Google Scholar 

  12. Jung, A.B., et al.: imgaug (2020)

    Google Scholar 

  13. Langer, N., et al.: The AI neuropsychologist: Automatic scoring of memory deficits with deep learning (2022). https://doi.org/10.1101/2022.06.15.496291

  14. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11976–11986 (2022)

    Google Scholar 

  15. Park, J.Y., Seo, E.H., Yoon, H.J., Won, S., Lee, K.H.: Automating Rey complex figure test scoring using a deep learning-based approach: A potential large-scale screening tool for congnitive decline (2022). https://www.researchsquare.com/article/rs-1973305/v1

  16. Izmailov, P., Wilson, A.G.: Stochastic weight averaging in pytorch (29042019). https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/

  17. Ross Wightman: Pytorch image models (2019)

    Google Scholar 

  18. Shin, M.S., Park, S.Y., Park, S.R., Seol, S.H., Kwon, J.S.: Clinical and empirical applications of the Rey-Osterrieth complex figure test. Nat. Protoc. 1(2), 892–899 (2006)

    Article  Google Scholar 

  19. Simfukwe, C., An, S.S., Youn, Y.C.: Comparison of RCF scoring system to clinical decision for the Rey complex figure using machine-learning algorithm. Dement. Neurocognitive Disord. 20(4), 70–79 (2021)

    Article  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR). San Diego (may 2015)

    Google Scholar 

  21. Webb, S.S., et al.: Validation of an automated scoring program for a digital complex figure copy task within healthy aging and stroke. Neuropsychology 35(8), 847–862 (2021)

    Article  Google Scholar 

  22. Li, Y.: Development of a Haptic-based Rey-Osterrieth Complex Figure Testing and Training System with Computer Scoring and Force-feedback Rehabilitation \(\ldots \) (2010). https://repository.lib.ncsu.edu/bitstream/handle/1840.16/6062/etd.pdf?sequence=1

  23. Zhang, X., Lv, L., Min, G., Wang, Q., Zhao, Y., Li, Y.: Overview of the complex figure test and its clinical application in neuropsychiatric disorders, including copying and recall. Front. Neurol. 12, 680474 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the University Hospital Cologne for providing the data. The authors would also like to thank NVIDIA for their hardware donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Christlein .

Editor information

Editors and Affiliations

Appendices

A Augmentation Details

Table 4. Different augmentation levels (parameter ranges are uniformly distributed).

B Ensembling Combinations

Table 5. All different model combinations.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schuster, B. et al. (2023). Multi-stage Fine-Tuning Deep Learning Models Improves Automatic Assessment of the Rey-Osterrieth Complex Figure Test. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14187. Springer, Cham. https://doi.org/10.1007/978-3-031-41676-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41676-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41675-0

  • Online ISBN: 978-3-031-41676-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics