Skip to main content

SCI-3000: A Dataset for Figure, Table and Caption Extraction from Scientific PDFs

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Abstract

Extracting figures and similar visual elements from PDFs of scientific publications is important but non-trivial, and progress is impeded by a lack of datasets for evaluation and machine learning. In this work, we describe and publish the SCI-3000 dataset, containing 3 000 PDFs of scientific publications (34 791 pages) with annotations of figures, tables, and corresponding captions, from the fields of computer science, biomedicine, chemistry, physics, and technology. We demonstrate the use of the dataset to benchmark two figure, table, and caption extraction approaches from recent literature: one rule-based and one deep learning-based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DOI: 10.5281/zenodo.6564971

  2. 2.

    https://github.com/allenai/deepfigures-open, accessed on 15.09.2021

  3. 3.

    https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist, accessed on 15.09.2021

  4. 4.

    https://pypi.org/project/sci-annot-eval

  5. 5.

    https://doaj.org/

  6. 6.

    https://www.loc.gov/catdir/cpso/lcco/

  7. 7.

    https://poppler.freedesktop.org/, accessed on 24.04.2023

  8. 8.

    DOI: 10.5281/zenodo.7878627

  9. 9.

    DOI: 10.5281/zenodo.7878638

  10. 10.

    https://doi.org/10.34726/hss.2022.94800

  11. 11.

    https://github.com/allenai/pdffigures2, accessed on 15.05.2022

  12. 12.

    https://github.com/allenai/deepfigures-open, accessed on 15.05.2022

References

  1. Ahmed, Z., Zeeshan, S., Dandekar, T.: Mining biomedical images towards valuable information retrieval in biomedical and life sciences. Database 2016, baw118 (2016). https://doi.org/10.1093/database/baw118

    Article  Google Scholar 

  2. Asgari Taghanaki, S., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54(1), 137–178 (2021)

    Article  Google Scholar 

  3. Chiu, P., Chen, F., Denoue, L.: Picture detection in document page images. In: Proceedings of the 10th ACM Symposium on Document Engineering, pp. 211–214. DocEng 2010, Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1860559.1860605

  4. Choudhury, S.R., et al.: A figure search engine architecture for a chemistry digital library. In: Proceedings of the 13th ACM/IEEE-CS joint Conference on Digital libraries, pp. 369–370. JCDL 2013, Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2467696.2467757

  5. Clark, C., Divvala, S.: PDFFigures 2.0: Mining figures from research papers. In: 2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL), pp. 143–152 (2016)

    Google Scholar 

  6. Clark, C.A., Divvala, S.: Looking beyond text: extracting figures, tables and captions from computer science papers. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015), https://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10092

  7. Gao, L., Yi, X., Jiang, Z., Hao, L., Tang, Z.: ICDAR2017 competition on page object detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1417–1422 (2017). https://doi.org/10.1109/ICDAR.2017.231, ISSN: 2379-2140

  8. Göbel, M., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 table competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1449–1453 (2013). https://doi.org/10.1109/ICDAR.2013.292, ISSN: 2379-2140

  9. Hara, K., Adams, A., Milland, K., Savage, S., Callison-Burch, C., Bigham, J.P.: A data-driven analysis of workers’ earnings on amazon mechanical turk. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery, New York (2018), https://doi.org/10.1145/3173574.3174023

  10. Hara, K., et al.: Worker demographics and earnings on amazon mechanical turk: an exploratory analysis. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–6. CHI EA 2019, Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290607.3312970

  11. García Seco de Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the ImageCLEF 2016 medical task. In: Working Notes of CLEF 2016 - Conference and Labs of the Evaluation forum (2016)

    Google Scholar 

  12. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_25

    Chapter  Google Scholar 

  13. Jimeno Yepes, A., Zhong, P., Burdick, D.: ICDAR 2021 competition on scientific literature parsing. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 605–617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_40

    Chapter  Google Scholar 

  14. Kavasidis, I., et al.: A saliency-based convolutional neural network for table and chart detection in digitized documents. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 292–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_27

    Chapter  Google Scholar 

  15. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuzi, S., Zhai, C.X.: Figure retrieval from collections of research articles. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 696–710. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15712-8_45

    Chapter  Google Scholar 

  17. Kuzi, S., Zhai, C.X.: A study of distributed representations for figures of research articles. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 284–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_19

    Chapter  Google Scholar 

  18. Kuzi, S., Zhai, C., Tian, Y., Tang, H.: FigExplorer: a system for retrieval and exploration of figures from collections of research articles. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2133–2136. SIGIR 2020, Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3397271.3401400

  19. Li, P., Jiang, X., Shatkay, H.: Figure and caption extraction from biomedical documents. Bioinformatics 35(21), 4381–4388 (2019)

    Article  Google Scholar 

  20. Li, X.H., Yin, F., Liu, C.L.: Page object detection from PDF document images by deep structured prediction and supervised clustering. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3627–3632 (2018). https://doi.org/10.1109/ICPR.2018.8546073, ISSN: 1051-4651

  21. Liu, G., Haralick, R.M.: Optimal matching problem in detection and recognition performance evaluation. Pattern Recogn. 35(10), 2125–2139 (2002)

    Article  MATH  Google Scholar 

  22. Lopez, L.D., Yu, J., Arighi, C.N., Huang, H., Shatkay, H., Wu, C.: An automatic system for extracting figures and captions in biomedical PDF documents. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine, pp. 578–581 (2011). https://doi.org/10.1109/BIBM.2011.26

  23. Peng, Y.X., et al.: Cross-media analysis and reasoning: advances and directions. Front. Inf. Technol. Electron. Eng. 18(1), 44–57 (2017). https://doi.org/10.1631/FITEE.1601787

    Article  Google Scholar 

  24. Pitale, S., Sharma, T.: Information extraction tools for portable document format. Int. J. Comput. Technol. Appl. 2, 2047–2051 (2012)

    Google Scholar 

  25. Praczyk, P.A., Nogueras-Iso, J.: Automatic extraction of figures from scientific publications in high-energy physics. Inf. Technol. Libr. 32(4), 25–52 (2013)

    Google Scholar 

  26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91, ISSN: 1063-6919

  27. Saha, R., Mondal, A., Jawahar, C.V.: Graphical object detection in document images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 51–58 (2019). https://doi.org/10.1109/ICDAR.2019.00018, ISSN: 2379-2140

  28. Shao, M., Futrelle, R.P.: Recognition and classification of figures in PDF documents. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 231–242. Springer, Heidelberg (2006). https://doi.org/10.1007/11767978_21

    Chapter  Google Scholar 

  29. Siegel, N., Horvitz, Z., Levin, R., Divvala, S., Farhadi, A.: FigureSeer: parsing result-figures in research papers. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 664–680. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_41

    Chapter  Google Scholar 

  30. Siegel, N., Lourie, N., Power, R., Ammar, W.: Extracting scientific figures with distantly supervised neural networks. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, pp. 223–232. JCDL 2018, Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3197026.3197040

  31. Sohmen, L., Charbonnier, J., Blümel, I., Wartena, Ch., Heller, L.: Figures in scientific open access publications. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J. (eds.) TPDL 2018. LNCS, vol. 11057, pp. 220–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00066-0_19

    Chapter  Google Scholar 

  32. Stahl, C.G., Young, S.R., Herrmannova, D., Patton, R.M., Wells, J.C.: DeepPDF: a deep learning approach to extracting text from PDFs. In: Proceedings of the 7th International Workshop on Mining Scientific Publications (2018), https://www.osti.gov/biblio/1460210

  33. Tsutsui, S., Crandall, D.J.: A data driven approach for compound figure separation using convolutional neural networks. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 533–540 (2017). https://doi.org/10.1109/ICDAR.2017.93, ISSN: 2379-2140

  34. Yang, S.T., et al.: Identifying the central figure of a scientific paper. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1063–1070 (2019). https://doi.org/10.1109/ICDAR.2019.00173, ISSN: 2379-2140

  35. Yi, X., Gao, L., Liao, Y., Zhang, X., Liu, R., Jiang, Z.: CNN based page object detection in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 230–235 (2017). https://doi.org/10.1109/ICDAR.2017.46, ISSN: 2379-2140

  36. Younas, J., et al.: Fi-Fo detector: figure and formula detection using deformable networks. Appl. Sci. 10(18), 6460 (2020)

    Article  Google Scholar 

  37. Yu, Y., Lin, H., Meng, J., Wei, X., Zhao, Z.: Assembling deep neural networks for medical compound figure detection. Information 8(2), 48 (2017)

    Article  Google Scholar 

  38. Zhong, X., Tang, J., Jimeno Yepes, A.: PubLayNet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022 (2019). https://doi.org/10.1109/ICDAR.2019.00166, ISSN: 2379-2140

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Darmanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Darmanović, F., Hanbury, A., Zlabinger, M. (2023). SCI-3000: A Dataset for Figure, Table and Caption Extraction from Scientific PDFs. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14187. Springer, Cham. https://doi.org/10.1007/978-3-031-41676-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41676-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41675-0

  • Online ISBN: 978-3-031-41676-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics