Abstract
Extracting figures and similar visual elements from PDFs of scientific publications is important but non-trivial, and progress is impeded by a lack of datasets for evaluation and machine learning. In this work, we describe and publish the SCI-3000 dataset, containing 3 000 PDFs of scientific publications (34 791 pages) with annotations of figures, tables, and corresponding captions, from the fields of computer science, biomedicine, chemistry, physics, and technology. We demonstrate the use of the dataset to benchmark two figure, table, and caption extraction approaches from recent literature: one rule-based and one deep learning-based.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
DOI: 10.5281/zenodo.6564971
- 2.
https://github.com/allenai/deepfigures-open, accessed on 15.09.2021
- 3.
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist, accessed on 15.09.2021
- 4.
- 5.
- 6.
- 7.
https://poppler.freedesktop.org/, accessed on 24.04.2023
- 8.
DOI: 10.5281/zenodo.7878627
- 9.
DOI: 10.5281/zenodo.7878638
- 10.
- 11.
https://github.com/allenai/pdffigures2, accessed on 15.05.2022
- 12.
https://github.com/allenai/deepfigures-open, accessed on 15.05.2022
References
Ahmed, Z., Zeeshan, S., Dandekar, T.: Mining biomedical images towards valuable information retrieval in biomedical and life sciences. Database 2016, baw118 (2016). https://doi.org/10.1093/database/baw118
Asgari Taghanaki, S., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54(1), 137–178 (2021)
Chiu, P., Chen, F., Denoue, L.: Picture detection in document page images. In: Proceedings of the 10th ACM Symposium on Document Engineering, pp. 211–214. DocEng 2010, Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1860559.1860605
Choudhury, S.R., et al.: A figure search engine architecture for a chemistry digital library. In: Proceedings of the 13th ACM/IEEE-CS joint Conference on Digital libraries, pp. 369–370. JCDL 2013, Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2467696.2467757
Clark, C., Divvala, S.: PDFFigures 2.0: Mining figures from research papers. In: 2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL), pp. 143–152 (2016)
Clark, C.A., Divvala, S.: Looking beyond text: extracting figures, tables and captions from computer science papers. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015), https://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10092
Gao, L., Yi, X., Jiang, Z., Hao, L., Tang, Z.: ICDAR2017 competition on page object detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1417–1422 (2017). https://doi.org/10.1109/ICDAR.2017.231, ISSN: 2379-2140
Göbel, M., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 table competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1449–1453 (2013). https://doi.org/10.1109/ICDAR.2013.292, ISSN: 2379-2140
Hara, K., Adams, A., Milland, K., Savage, S., Callison-Burch, C., Bigham, J.P.: A data-driven analysis of workers’ earnings on amazon mechanical turk. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery, New York (2018), https://doi.org/10.1145/3173574.3174023
Hara, K., et al.: Worker demographics and earnings on amazon mechanical turk: an exploratory analysis. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–6. CHI EA 2019, Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290607.3312970
García Seco de Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the ImageCLEF 2016 medical task. In: Working Notes of CLEF 2016 - Conference and Labs of the Evaluation forum (2016)
Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_25
Jimeno Yepes, A., Zhong, P., Burdick, D.: ICDAR 2021 competition on scientific literature parsing. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 605–617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_40
Kavasidis, I., et al.: A saliency-based convolutional neural network for table and chart detection in digitized documents. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 292–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_27
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)
Kuzi, S., Zhai, C.X.: Figure retrieval from collections of research articles. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 696–710. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15712-8_45
Kuzi, S., Zhai, C.X.: A study of distributed representations for figures of research articles. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12656, pp. 284–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72113-8_19
Kuzi, S., Zhai, C., Tian, Y., Tang, H.: FigExplorer: a system for retrieval and exploration of figures from collections of research articles. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2133–2136. SIGIR 2020, Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3397271.3401400
Li, P., Jiang, X., Shatkay, H.: Figure and caption extraction from biomedical documents. Bioinformatics 35(21), 4381–4388 (2019)
Li, X.H., Yin, F., Liu, C.L.: Page object detection from PDF document images by deep structured prediction and supervised clustering. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3627–3632 (2018). https://doi.org/10.1109/ICPR.2018.8546073, ISSN: 1051-4651
Liu, G., Haralick, R.M.: Optimal matching problem in detection and recognition performance evaluation. Pattern Recogn. 35(10), 2125–2139 (2002)
Lopez, L.D., Yu, J., Arighi, C.N., Huang, H., Shatkay, H., Wu, C.: An automatic system for extracting figures and captions in biomedical PDF documents. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine, pp. 578–581 (2011). https://doi.org/10.1109/BIBM.2011.26
Peng, Y.X., et al.: Cross-media analysis and reasoning: advances and directions. Front. Inf. Technol. Electron. Eng. 18(1), 44–57 (2017). https://doi.org/10.1631/FITEE.1601787
Pitale, S., Sharma, T.: Information extraction tools for portable document format. Int. J. Comput. Technol. Appl. 2, 2047–2051 (2012)
Praczyk, P.A., Nogueras-Iso, J.: Automatic extraction of figures from scientific publications in high-energy physics. Inf. Technol. Libr. 32(4), 25–52 (2013)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91, ISSN: 1063-6919
Saha, R., Mondal, A., Jawahar, C.V.: Graphical object detection in document images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 51–58 (2019). https://doi.org/10.1109/ICDAR.2019.00018, ISSN: 2379-2140
Shao, M., Futrelle, R.P.: Recognition and classification of figures in PDF documents. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 231–242. Springer, Heidelberg (2006). https://doi.org/10.1007/11767978_21
Siegel, N., Horvitz, Z., Levin, R., Divvala, S., Farhadi, A.: FigureSeer: parsing result-figures in research papers. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 664–680. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_41
Siegel, N., Lourie, N., Power, R., Ammar, W.: Extracting scientific figures with distantly supervised neural networks. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, pp. 223–232. JCDL 2018, Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3197026.3197040
Sohmen, L., Charbonnier, J., Blümel, I., Wartena, Ch., Heller, L.: Figures in scientific open access publications. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J. (eds.) TPDL 2018. LNCS, vol. 11057, pp. 220–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00066-0_19
Stahl, C.G., Young, S.R., Herrmannova, D., Patton, R.M., Wells, J.C.: DeepPDF: a deep learning approach to extracting text from PDFs. In: Proceedings of the 7th International Workshop on Mining Scientific Publications (2018), https://www.osti.gov/biblio/1460210
Tsutsui, S., Crandall, D.J.: A data driven approach for compound figure separation using convolutional neural networks. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 533–540 (2017). https://doi.org/10.1109/ICDAR.2017.93, ISSN: 2379-2140
Yang, S.T., et al.: Identifying the central figure of a scientific paper. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1063–1070 (2019). https://doi.org/10.1109/ICDAR.2019.00173, ISSN: 2379-2140
Yi, X., Gao, L., Liao, Y., Zhang, X., Liu, R., Jiang, Z.: CNN based page object detection in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 230–235 (2017). https://doi.org/10.1109/ICDAR.2017.46, ISSN: 2379-2140
Younas, J., et al.: Fi-Fo detector: figure and formula detection using deformable networks. Appl. Sci. 10(18), 6460 (2020)
Yu, Y., Lin, H., Meng, J., Wei, X., Zhao, Z.: Assembling deep neural networks for medical compound figure detection. Information 8(2), 48 (2017)
Zhong, X., Tang, J., Jimeno Yepes, A.: PubLayNet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022 (2019). https://doi.org/10.1109/ICDAR.2019.00166, ISSN: 2379-2140
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Darmanović, F., Hanbury, A., Zlabinger, M. (2023). SCI-3000: A Dataset for Figure, Table and Caption Extraction from Scientific PDFs. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14187. Springer, Cham. https://doi.org/10.1007/978-3-031-41676-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-41676-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41675-0
Online ISBN: 978-3-031-41676-7
eBook Packages: Computer ScienceComputer Science (R0)