Skip to main content

Towards Writer Retrieval for Historical Datasets

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Abstract

This paper presents an unsupervised approach for writer retrieval based on clustering SIFT descriptors detected at keypoint locations resulting in pseudo-cluster labels. With those cluster labels, a residual network followed by our proposed NetRVLAD, an encoding layer with reduced complexity compared to NetVLAD, is trained on \(32\times 32\) patches at keypoint locations. Additionally, we suggest a graph-based reranking algorithm called SGR to exploit similarities of the page embeddings to boost the retrieval performance. Our approach is evaluated on two historical datasets (Historical-WI and HisIR19). We include an evaluation of different backbones and NetRVLAD. It competes with related work on historical datasets without using explicit encodings. We set a new State-of-the-art on both datasets by applying our reranking scheme and show that our approach achieves comparable performance on a modern dataset as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arandjelovic, R., Gronát, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, pp. 5297–5307 (2016)

    Google Scholar 

  2. Chammas, M., Makhoul, A., Demerjian, J.: Writer identification for historical handwritten documents using a single feature extraction method. In: 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020, Miami, FL, USA, December 14–17, 2020, pp. 1–6 (2020)

    Google Scholar 

  3. Christlein, V., Bernecker, D., Angelopoulou, E.: Writer identification using VLAD encoded contour-zernike moments. In: 13th International Conference on Document Analysis and Recognition, ICDAR 2015, Nancy, France, August 23–26, 2015, pp. 906–910 (2015)

    Google Scholar 

  4. Christlein, V., Bernecker, D., Hönig, F., Maier, A.K., Angelopoulou, E.: Writer identification using GMM supervectors and exemplar-SVMs. Pattern Recognit. 63, 258–267 (2017)

    Article  Google Scholar 

  5. Christlein, V., Gropp, M., Fiel, S., Maier, A.K.: Unsupervised feature learning for writer identification and writer retrieval. In: 14th IAPR International Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November 9–15, 2017, pp. 991–997 (2017)

    Google Scholar 

  6. Christlein, V., Maier, A.K.: Encoding CNN activations for writer recognition. In: 13th IAPR International Workshop on Document Analysis Systems, DAS 2018, Vienna, Austria, April 24–27, 2018, pp. 169–174 (2018)

    Google Scholar 

  7. Christlein, V., Nicolaou, A., Seuret, M., Stutzmann, D., Maier, A.: ICDAR 2019 competition on image retrieval for historical handwritten documents. In: 2019 International Conference on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, September 20–25, 2019, pp. 1505–1509 (2019)

    Google Scholar 

  8. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, October 14–20, 2007, pp. 1–8 (2007)

    Google Scholar 

  9. Fiel, S., et al.: ICDAR2017 competition on historical document writer identification (historical-WI). In: 14th IAPR International Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, November 9–15, 2017, pp. 1377–1382 (2017)

    Google Scholar 

  10. Fiel, S., Sablatnig, R.: Writer identification and retrieval using a convolutional neural network. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 26–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4_3

    Chapter  Google Scholar 

  11. Gordo, A., Radenovic, F., Berg, T.: Attention-based query expansion learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 172–188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_11

    Chapter  Google Scholar 

  12. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20–25 June 2009, Miami, Florida, USA, pp. 1169–1176 (2009)

    Google Scholar 

  13. Jordan, S., et al.: Re-ranking for writer identification and writer retrieval. In: Bai, X., Karatzas, D., Lopresti, D. (eds.) DAS 2020. LNCS, vol. 12116, pp. 572–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57058-3_40

    Chapter  Google Scholar 

  14. Keglevic, M., Fiel, S., Sablatnig, R.: Learning features for writer retrieval and identification using triplet CNNs. In: 16th International Conference on Frontiers in Handwriting Recognition, ICFHR 2018, Niagara Falls, NY, USA, August 5–8, 2018, pp. 211–216 (2018)

    Google Scholar 

  15. Kleber, F., Fiel, S., Diem, M., Sablatnig, R.: CVL-DataBase: an off-line database for writer retrieval, writer identification and word spotting. In: 12th International Conference on Document Analysis and Recognition, ICDAR 2013, Washington, DC, USA, August 25–28, 2013, pp. 560–564 (2013)

    Google Scholar 

  16. Lai, S., Zhu, Y., Jin, L.: Encoding pathlet and SIFT features with bagged VLAD for historical writer identification. IEEE Trans. Inf. Forensics Secur. 15, 3553–3566 (2020)

    Article  Google Scholar 

  17. Louloudis, G., Gatos, B., Stamatopoulos, N., Papandreou, A.: ICDAR 2013 competition on writer identification. In: 12th International Conference on Document Analysis and Recognition, ICDAR 2013, Washington, DC, USA, August 25–28, 2013, pp. 1397–1401 (2013)

    Google Scholar 

  18. Louloudis, G., Gatos, B., Stamatopoulos, N., Papandreou, A.: ICDAR 2013 competition on writer identification. In: 12th International Conference on Document Analysis and Recognition, ICDAR 2013, Washington, DC, USA, August 25–28, 2013, pp. 1397–1401 (2013)

    Google Scholar 

  19. Peer, M., Kleber, F., Sablatnig, R.: Self-supervised vision transformers with data augmentation strategies using morphological operations for writer retrieval. In: Frontiers in Handwriting Recognition - 18th International Conference, ICFHR 2022, Hyderabad, India, December 4–7, 2022, Proceedings, pp. 122–136 (2022)

    Google Scholar 

  20. Peer, M., Kleber, F., Sablatnig, R.: Writer retrieval using compact convolutional transformers and NetMVLAD. In: 26th International Conference on Pattern Recognition, ICPR 2022, Montreal, QC, Canada, August 21–25, 2022, pp. 1571–1578 (2022)

    Google Scholar 

  21. Radenovic, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668 (2019)

    Article  Google Scholar 

  22. Rasoulzadeh, S., BabaAli, B.: Writer identification and writer retrieval based on netVLAD with re-ranking. IET Biom. 11(1), 10–22 (2022)

    Article  Google Scholar 

  23. Tan, F., Yuan, J., Ordonez, V.: Instance-level image retrieval using reranking transformers. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10–17, 2021, pp. 12085–12095 (2021)

    Google Scholar 

  24. Wang, X., Zhang, H., Huang, W., Scott, M.R.: Cross-batch memory for embedding learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020. pp. 6387–6396 (2020)

    Google Scholar 

  25. Wang, Z., Maier, A., Christlein, V.: Towards end-to-end deep learning-based writer identification. In: 50. Jahrestagung der Gesellschaft für Informatik, INFORMATIK 2020 - Back to the Future, Karlsruhe, Germany, 28. September - 2. Oktober 2020, vol. P-307, pp. 1345–1354 (2020)

    Google Scholar 

  26. Weng, L., Ye, L., Tian, J., Cao, J., Wang, J.: Random VLAD based deep hashing for efficient image retrieval. CoRR abs/2002.02333 (2020)

    Google Scholar 

  27. Zhang, X., Jiang, M., Zheng, Z., Tan, X., Ding, E., Yang, Y.: Understanding image retrieval re-ranking: A graph neural network perspective. arXiv preprint arXiv:2012.07620 (2020)

Download references

Acknowledgments

The project has been funded by the Austrian security research programme KIRAS of the Federal Ministry of Finance (BMF) under the Grant Agreement 879687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Peer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peer, M., Kleber, F., Sablatnig, R. (2023). Towards Writer Retrieval for Historical Datasets. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14187. Springer, Cham. https://doi.org/10.1007/978-3-031-41676-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41676-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41675-0

  • Online ISBN: 978-3-031-41676-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics