Skip to main content

Non-principal Branches of Lambert W. A Tale of 2 Circles

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14139))

Included in the following conference series:

  • 214 Accesses

Abstract

The Lambert W function is a multivalued function whose principal branch has been studied in detail. Non-principal branches, however, have been much less studied. Here, asymptotic series expansions for the non-principal branches are obtained, and their properties, including accuracy and convergence are studied. The expansions are investigated by mapping circles around singular points in the domain of the function into the range of the function using the new expansions. Different expansions apply for large circles around the origin and for small circles. Although the expansions are derived as asymptotic expansions, some surprising convergence properties are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Citations of [1] as of July 2023: Google scholar 7283; Scopus 4588.

  2. 2.

    Note the plural. We regard each branch of \(W_k\) as a separate function with its own domain and range [14].

  3. 3.

    This whimsical Shakespearian reference emphasises the mathematical point that previous investigations have concentrated on the large circle and neglected the equally important small circle.

  4. 4.

    Indeed, some authors define an asymptotic series as one that does not converge [18].

References

  1. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comp. Math. 5(4), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jeffrey, D.J., Hare, D.E.G., Corless, R.M.: Unwinding the branches of the Lambert W function. Math. Scientist 21, 1–7 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions (2023). https://dlmf.nist.gov/. Accessed 15 June 2023

  4. Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Disc. Math. 75, 167–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein, J.M., Lindstrom, S.B.: Meetings with Lambert \(W\) and other special functions in optimization and analysis. Pure Appl. Funct. Anal. 1(3), 361–396 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Kalugin, G.A., Jeffrey, D.J., Corless, R.M., Borwein, P.B.: Stieltjes and other integral representations for functions of Lambert W. Integral Transf. Spec. Funct. 23(8), 581–593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iacono, R., Boyd, J.P.: New approximations to the principal real-valued branch of the Lambert W-function. Adv. Comput. Math. 43, 1403–1436 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mahroo, O.A.R., Lamb, T.D.: Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics. J. Physiol. 554(2), 417–437 (2004)

    Article  Google Scholar 

  9. Marsaglia, G., Marsaglia, J.C.W.: A new derivation of Stirling’s approximation to \(n!\). Am. Math. Monthly 97(9), 826–829 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vinogradov, V.: On Kendall-Ressel and related distributions. Stat. Prob. Lett. 81, 1493–1501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vinogradov, V.: Some utilizations of Lambert W function in distribution theory. Commun. Stat. Theory Methods 42, 2025–2043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Bruijn, N.G.: Asymptotic Methods in Analysis. North-Holland (1961)

    Google Scholar 

  13. Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A sequence of series for the Lambert W function. In: Küchlin, W.W. (ed.) ISSAC 1997: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 197–204. Association of Computing Machinery (1997)

    Google Scholar 

  14. Jeffrey, D.J., Watt, S.M.: Working with families of inverse functions. In: Buzzard, K., Kutsia, T. (eds.) Intelligent Computer Mathematics, vol. 13467 of Lecture Notes in Computer Science, pp. 1–16. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16681-5_16

  15. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, Cambridge (1974)

    MATH  Google Scholar 

  16. Comtet, L.: Inversion de \(y^\alpha e^y\) et \(y\log ^\alpha y\) au moyen des nombres de Stirling. C. R. Acad. Sc. Paris 270, 1085–1088 (1970)

    Google Scholar 

  17. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  18. Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, Cambridge (1973)

    MATH  Google Scholar 

  19. Jeffrey, D.J., Corless, R.M., Hare, D.E.G., Knuth, D.E.: Sur l’inversion de \(y^a e^y\) au moyen des nombres de Stirling associés. Comptes Rendus Acad. Sci. Paris Serie I-Mathematique 320(12), 1449–1452 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Jeffrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imre, J., Jeffrey, D.J. (2023). Non-principal Branches of Lambert W. A Tale of 2 Circles. In: Boulier, F., England, M., Kotsireas, I., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2023. Lecture Notes in Computer Science, vol 14139. Springer, Cham. https://doi.org/10.1007/978-3-031-41724-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41724-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41723-8

  • Online ISBN: 978-3-031-41724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics