Skip to main content

A Modular Algorithm for Computing the Intersection of a One-Dimensional Quasi-Component and a Hypersurface

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2023)

Abstract

Computing triangular decompositions of polynomial systems can be performed incrementally with a procedure named Intersect. This procedure computes the common zeros (encoded as regular chains) of a quasi-component and a hypersurface. As a result, decomposing a polynomial system into regular chains can be achieved by repeated calls to the Intersect procedure. Expression swell in Intersect has long been observed in the literature. When the regular chain input to Intersect is of positive dimension, intermediate expression swell is likely to happen due to spurious factors in the computation of resultants and subresultants.

In this paper, we show how to eliminate this issue. We report on its implementation in the polynomial system solver of the BPAS (Basic Polynomial Algebra Subprogram) library. Our experimental results illustrate the practical benefits. The new solver can process various systems which were previously unsolved by existing implementations of regular chains. Those implementations were either limited by time, memory consumption, or both. The modular method brings orders of magnitude speedup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 2 for a review of regular chain theory, including definitions of the terms quasi-component, initial, etc.

  2. 2.

    The differential ideal generated by finitely many differential polynomials is generally not finitely generated, when regarded as an algebraic ideal.

References

  1. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35(4), 403–419 (2003)

    Article  MATH  Google Scholar 

  2. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (2023). https://www.bpaslib.org

  3. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M.: Algorithms and data structures for sparse polynomial arithmetic. Mathematics 7(5), 441 (2019)

    Article  Google Scholar 

  4. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization of triangular decompositions: techniques and implementation. J. Symb. Comput. 115, 371–406 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asadi, M., Brandt, A., Moreno Maza, M.: Computational schemes for subresultant chains. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 21–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85165-1_3

    Chapter  Google Scholar 

  6. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comput. 28(1–2), 105–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Becker, E., Mora, T., Marinari, M.G., Traverso, C.: The shape of the shape lemma. In: MacCallum, M.A.H. (ed.) Proceedings of ISSAC 1994, pp. 129–133. ACM (1994)

    Google Scholar 

  8. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 158–166. ACM (1995)

    Google Scholar 

  9. Boulier, F., Lemaire, F., Moreno Maza, M.: Well known theorems on triangular systems and the D5 principle. In: Proceedings of the Transgressive Computing (2006)

    Google Scholar 

  10. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic sets by change of ordering. J. Symb. Comput. 45(1), 124–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brandt, A.: The design and implementation of a high-performance polynomial system solver. Ph.D. thesis, University of Western Ontario (2022)

    Google Scholar 

  13. Chen, C., et al.: Computing the real solutions of polynomial systems with the regularchains library in maple. ACM Commun. Comput. Algebra 45(3/4) (2011)

    Google Scholar 

  14. Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Triangular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical algebraic decompositions. In: Feng, R., Lee, W., Sato, Y. (eds.) Computer Mathematics, pp. 199–221. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43799-5_17

    Chapter  Google Scholar 

  17. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition based on regular chains. J. Symb. Comput. 75, 74–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chou, S., Gao, X.: Computations with parametric equations. In: Proceedings of the ISSAC 1991, pp. 122–127 (1991)

    Google Scholar 

  19. Chou, S., Gao, X.: A zero structure theorem for differential parametric systems. J. Symb. Comput. 16(6), 585–596 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

    Book  MATH  Google Scholar 

  21. Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 108–115 (2005)

    Google Scholar 

  22. Dong, R., Lu, D., Mou, C., Wang, D.: Comprehensive characteristic decomposition of parametric polynomial systems. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 123–130. ACM (2021)

    Google Scholar 

  23. Faugère, J.C.: Résolution des systèmes d’équations algébriques. Ph.D. thesis, Université Paris 6 (1994)

    Google Scholar 

  24. Gao, X., van der Hoeven, J., Yuan, C., Zhang, G.: Characteristic set method for differential-difference polynomial systems. J. Symb. Comput. 44(9) (2009)

    Google Scholar 

  25. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  26. Hu, Y., Gao, X.S.: Ritt-Wu characteristic set method for Laurent partial differential polynomial systems. J. Syst. Sci. Complex. 32(1), 62–77 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kapur, D., Saxena, T.: Extraneous factors in the Dixon resultant formulation. In: Proceedings of the ISSAC 1997, pp. 141–148. ACM (1997)

    Google Scholar 

  28. Lazard, D.: A new method for solving algebraic systems of positive dimension. Discret. Appl. Math. 33(1–3), 147–160 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2), 117–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Monagan, M.B.: Probabilistic algorithms for computing resultants. In: Proceedings of the ISSAC, pp. 245–252. ACM (2005)

    Google Scholar 

  31. Moreno Maza, M., Sandford, R.: Towards extending Fulton’s algorithm for computing intersection multiplicities beyond the bivariate case. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 232–251. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85165-1_14

    Chapter  MATH  Google Scholar 

  32. Moreno Maza, M., Xia, B., Xiao, R.: On solving parametric polynomial systems. Math. Comput. Sci. 6(4), 457–473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moreno Maza, M.: On triangular decompositions of algebraic varieties. Technical report. TR 4/99, NAG Ltd, Oxford, UK (1999). Presented at the MEGA-2000 Conference

    Google Scholar 

  34. Maza, M.M., Rioboo, R.: Polynomial GCD computations over towers of algebraic extensions. In: Cohen, G., Giusti, M., Mora, T. (eds.) AAECC 1995. LNCS, vol. 948, pp. 365–382. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60114-7_28

    Chapter  MATH  Google Scholar 

  35. Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1966)

    Google Scholar 

  36. Schmid, J.: On the affine Bezout inequality. Manuscr. Math. 88(1), 225–232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schost, É.: Degree bounds and lifting techniques for triangular sets. In: Proceedings of the ISSAC 2002, pp. 238–245. ACM (2002)

    Google Scholar 

  38. Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of polynomial ideals. J. Symb. Comput. 22(3), 247–277 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Traverso, C.: Gröbner trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 125–138. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51084-2_12

    Chapter  Google Scholar 

  40. Wang, D.K.: The Wsolve package. www.mmrc.iss.ac.cn/~dwang/wsolve.html

  41. Wang, D.M.: Epsilon 0.618. http://wang.cc4cm.org/epsilon/index.html

  42. Wu, W.T.: A zero structure theorem for polynomial equations solving. MM Res. Preprints 1, 2–12 (1987)

    Google Scholar 

  43. Xia, B.: DISCOVERER: a tool for solving semi-algebraic systems. ACM Commun. Comput. Algebra 41(3), 102–103 (2007)

    Article  Google Scholar 

  44. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type theorems. Sci. China Ser. F Inf. Sci. 44(1), 33–49 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algorithm applied to automated reasoning. In: Artificial Intelligence in Mathematics, pp. 147–156. Oxford University Press (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Brandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandt, A., González Trochez, J.P., Moreno Maza, M., Yuan, H. (2023). A Modular Algorithm for Computing the Intersection of a One-Dimensional Quasi-Component and a Hypersurface. In: Boulier, F., England, M., Kotsireas, I., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2023. Lecture Notes in Computer Science, vol 14139. Springer, Cham. https://doi.org/10.1007/978-3-031-41724-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41724-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41723-8

  • Online ISBN: 978-3-031-41724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics