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Abstract. In this study, we propose a novel approach to enrich the
training data for automated driving by using a self-designed driving sim-
ulator and two human drivers to generate safety-critical corner cases in a
short period of time, as already presented in [12]. Our results show that
incorporating these corner cases during training improves the recognition
of corner cases during testing, even though, they were recorded due to
visual impairment. Using the corner case triggering pipeline developed
in the previous work, we investigate the effectiveness of using expert
models to overcome the domain gap due to different weather conditions
and times of day, compared to a universal model from a development
perspective. Our study reveals that expert models can provide signifi-
cant benefits in terms of performance and efficiency, and can reduce the
time and effort required for model training. Our results contribute to the
progress of automated driving, providing a pathway for safer and more
reliable autonomous vehicles on the road in the future.

Keywords: Driving Simulator · Corner Case · Human-In-The-Loop ·
Semantic Segmentation · Survival Analysis.

1 INTRODUCTION

If automotive manufacturers want to put autonomous vehicles higher than level
2 on the road, they should ensure that safety-critical driving situations are reg-
istered and that a safe solution for all road users is found as quickly as possible.
One way to achieve this is to provide a large amount of diverse data to the
model during training to increase the robustness and performance of AI algo-
rithms. However, large amounts of annotated data alone may not ensure safe
operation in those rare situations where road users are exposed to significant
risk. For this reason, we introduced the A-Eye method [12] to apply an accel-
erated testing strategy that exploits human risk perception to capture corner
cases and thereby achieve performance improvements in safety-critical driving

ar
X

iv
:2

30
5.

18
22

2v
1 

 [
cs

.C
V

] 
 2

3 
M

ay
 2

02
3



2 K. Kowol et al.

situations. To this end, a self-designed driving simulator was developed that de-
tects safety-critical driving situations in real-time based on poor AI predictions.
With the help of this driving simulator and a further driving campaign, the do-
main shift will be investigated on different weather domains. Closing the gap of
domain shifts due to different weather conditions requires targeted data genera-
tion from multiple domains to achieve a good performance. Even if using more
data and the best models leads to overcoming the domain gap, the question is
whether this is the most efficient way from the manufacturer’s point of view.
In this regard, we investigate whether overcoming the domain gap in different
weather conditions with specialized models works as well as or even better than
a universal model in the sense that all weather modalities are covered during
training. This involves training a baseline model on sunny and daytime images,
and then measuring in 600-second drives how long it takes for a corner case to
occur in one of the following conditions: rain, fog or night. An expert model
is then trained for each weather condition, which retrains the baseline model
for that domain. Finally, a universal model is trained, which is exposed to all
weather parameters during training. The expert and universal models are also
tested using the same scheme as the baseline model to measure the duration of
a corner case in case one occurs.

Outline Section 2 introduces the self-designed driving simulator with the soft-
ware and hardware used, followed by a corner case definition. A corner case
triggering pipeline is then presented and used in test field. Section 3 discusses
the basics of survival analysis to evaluate the drives from the weather-driving
campaign. Finally, we present our conclusions and give an outlook on future
directions of research in Section 4.

2 DRIVING SIMULATOR

There is an increased interest in human-in-the-loop (HITL) and machine learn-
ing approaches, where humans interact with machines to combine human and
machine intelligence to solve a given problem [19]. For this purpose simulators
were used to improve AI systems by means of human experience or to study
human behavior in field trials. We have therefore developed a test rig in which
two human drivers can control a vehicle in real-time, with the visual output of a
semantic segmentation network displayed on one driver’s screen, while the other
driver sees the untouched original image.

By evaluating the same driving situation differently due to visual perception,
we are able to find and save safety-critical driving situations in the shortest
possible time, which can subsequently be used for training. This kind of targeted
enrichment of training data with safety-critical driving situations is essential to
increase the performance of AI algorithms. Since the generation of corner cases
in the real world is not an option for safety reasons, generation remains in the
synthetic world, where specific critical driving situations can be simulated and
recorded. For this purpose, the autonomous driving simulator CARLA [6] is used.
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It is open-source software for data generation and/or testing of AI algorithms.
It s various sensors to describe the scenes such as cameras, LiDAR as well as
RADAR and provides ground truth data. CARLA is based on the Unreal Engine
game engine [17], which calculates and displays the behavior of the various road
users with consideration of physics and thus enables realistic driving. In addition,
with the Python API, the world can be modified and adapted to one’s own use
case. Therefore, we added another sensor, the inference sensor, to the script
for manual control from the CARLA repository which evaluates the CARLA
RGB images in real-time and outputs the prediction of a semantic segmentation
network on the screen, see Figure 1. By connecting a control unit that s a steering
wheel, pedals and a screen, it is possible to control a vehicle with ’the eyes of
the AI’ in the synthetic world of CARLA. Furthermore, we connected a second
control unit with the same components to the simulator, so that it is possible
to control the same vehicle with 2 different control units, see Figure 1. The
second control unit, therefore, has control over the CARLA clear image and can
intervene at any time. It always has priority and saves the past 3 seconds of
driving, which are buffered, on the hard disk. In order for the semantic driver
to follow the traffic rules in CARLA, the script had to be modified to display
the current traffic light phase in the top right corner and the speed in the top
center.

View of the semantic driver (top) and the
safety driver (bottom).

Test rig including steering wheels, pedals,
seats and screens.

Fig. 1: Harware and visual outputs of the A-Eye approach.

2.1 Test Rig

The test rig consists of a workstation with dual Intel Xeon Gold 6258R as CPUs,
3x GPUs Quadro RTX 8000 and 1TB of RAM, which provides both high access
speeds and sufficient memory swap calculations to meet the requirements of
CARLA version 0.9.10. The test rig also s 2 driving seats, 2 control units (steering
wheel with pedals), one monitor for each control unit as well as two monitors
for the control center. The control unit represents the interface between humans
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and machines. It enables the human to control a vehicle in CARLA freely via
the steering wheel and the brake or throttle pedals. The device of choice was
the Logitech G29 [13], which is also pre-implemented in CARLA’s control script
and can therefore be used as a controller almost without any problems.

2.2 Corner Cases

When thinking about autonomous vehicles that move safely through traffic, it is
necessary to perceive the environment correctly in order to provide safe driving.
Especially the detection of atypical and dangerous situations is crucial for the
safety of all road users. In order to improve the ability of today’s models to
handle such critical situations, datasets are required that allow for targeted
training and, more importantly, testing with such critical situations. While there
is no standard definition for the term corner case in the context of autonomous
driving, most definitions in the literature refer to rare but safety-critical driving
situations. These scenarios can , for example, extreme weather conditions, as well
as unexpected road obstacles that are uncommon but still need to be considered
to ensure safe vehicle operation.

According to [1], a corner case for camera-based systems in the field of au-
tonomous driving describes a ”non-predictable relevant object/class in relevant
location”. This means that the unpredictable happens to moving objects (rele-
vant class) interacting with each other on the road (crossing trajectories). Based
on this definition, a corner case detection framework was presented to calculate
a corner case score based on video sequences. The authors of [2] subsequently de-
veloped a systematization of corner cases, in which they divide corner cases into
different levels and according to the degree of complexity. In addition, examples
were given for each corner case level. This was also the basis for a subsequent
publication with additional examples [3]. Due to the camera-based approach in
the referenced works, a categorization of corner cases based on sensors was em-
ployed in [8], which also included radar and LiDAR sensors. The authors defined
four overarching layers - Sensor, Content, Temporal, and Method - that incor-
porated the previously defined levels. As this definition is scientifically grounded
and takes into account different sensor modalities, we would like to adopt it.

While Sensor, Content and Temporal Layer describe corner cases from the
perspective of the human driver, the Method Layer specifies corner cases in
machine learning models due to lack of knowledge. Accordingly, epistemic un-
certainty comes into play, which can be addressed by targeted data generation.
Therefore, our focus is on this type of layer to increase safety.

2.3 Triggering Corner Cases

Two test operators drive across the virtual world of CARLA and record scenes
in our specially designed test rig, where one subject (safety driver) gets to see
the original virtual image and the other (semantic driver) receives the output of
the semantic segmentation network (see Figure 1). The test rig is equipped with
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controls such as steering wheels, pedals and car seats and connected to CARLA
to create a simulated environment for realistic traffic participation.

The corner cases were generated as shown in Figure 2, using the real-time
semantic segmentation network Fast-SCNN where visual perception was limited
by intentionally stopping training early. This is sufficient to move in the virtual
streets, but is poor enough to enhance corner cases of the Method Layer. We note
that, according to [18], there were 128 accidents involving autonomous vehicles
on the road during test operations in 2014-2018, at least 6% of which can be
directly linked to misbehavior by the autonomous vehicle. It follows that at least
every 775335 km driven, a wrongful behavior of the autonomous vehicle occurs.
Using a poorly trained network as a part of our accelerated testing strategy, we
were able to generate corner cases after 3.34 km on average between interventions
of the safety driver. We note however that the efficiency of the corner cases was
evaluated using a fully trained network. Figure 3 shows two safety-critical corner
cases where the safety driver had to intervene to prevent a collision.

Fig. 2: Two human subjects are able to control the ego-vehicle. Thereby, the
semantic driver primarily controls the vehicle while following the traffic rules in
the virtual world seeing only the output of the semantic segmentation network.
The safety driver, who only sees the original image, takes on the role of a driv-
ing instructor and intervenes in the situation as soon as a dangerous situation
arises. Intervening in the current situation indicates poor situation awareness of
the segmentation network and represents a corner case, which simultaneously
terminates the ride. The figure was already published in [12].

In the event of a corner case being triggered by the safety driver, the test
operators are required to label the scenario with one of four options (overlooking
a pedestrian or a vehicle, disregarding traffic rules, intervening out of boredom)
and provide comments. In addition, the duration and the kilometers driven until
the corner case appears are registered. The test drivers were instructed to obey
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Fig. 3: Two examples of a corner case with pedestrians included, where the safety
driver had to intervene to avoid a collision due to the poor prediction of the
semantic segmentation network (both images on the right).

traffic rules and not exceed 50 km/h during the test drives. Over time, the drivers
became more familiar with the system, leading to a decrease in driving errors and
sudden braking. However, a learning effect also occurred where drivers may have
hidden situations where objects were not detected by the system. The test rides
are tracked and recorded, with the last three seconds of a corner case scenario
being saved at 10 fps. This data is then used to retrain the system, with a mix of
original and corner case images. 50 corner cases in connection with pedestrians
were collected, resulting in 1500 new frames for retraining, with an equal number
of frames being removed from the original training dataset.

We were able to show in [12] that the occurrence of a corner case situation
in a model trained with about two-thirds of Method Layer corner cases took
almost twice as long as in a model trained with the original dataset or with
more pedestrians included, see Table 1. The latter was checked because using
corner cases with pedestrians results in more pedestrian pixels being available
in the data. To allow a fair comparison the additional model was trained with
the same average number of pedestrian pixels per scene.

We have therefore demonstrated the benefits of our method for generating
corner cases, especially for safety-critical situations. We were also able to show
that adding safety-critical corner cases recorded by intentional perceptual dis-
tortions improves performance, so future datasets should include such situations.
Next, with this test rig setup we investigate whether a single network is required
to overcome the so-called domain gap, which describes the difference in data
during training and deployment, or whether, for cost and performance reasons,
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dataset
distance time #CC meandCC stddCC meantCC stdtCC

d [km] t [min] [-] [km/CC] [km/CC] [min/CC] [min/CC]

natural disritbution 121.32 411 13 7.73 14.25 25.93 39.60
pedestrian enriched 163.09 500 21 7.52 10.47 23.25 28.72
corner case enriched 153.38 528 11 13.84 8.68 47.47 31.87

Table 1: Corner case appearances on Fast-SCNN trained with 3 different
datasets. The table was already published in [12].

different networks should be used depending on the task. This will be investi-
gated using different weather conditions and survival analysis.

3 SURVIVAL ANALYSIS

Survival analysis is the study of lifespans, also survival times, and their influenc-
ing factors [15]. It uses statistical methods to investigate time intervals between
sequential events. Groups, but also individuals can be considered as the unit of
study when an expected event happens during a considered time period like the
time from birth until death, the time from entry a clinical trial until death, the
time from buying a vehicle until an accident happens, or other use cases. The
basic goals of survival analysis are [11]:

• estimation and interpretation of survivor or hazard functions
• comparing survivor and/or hazard functions
• relationship determination of explanatory variables to lifespans

First, some typical terms of survival analysis are introduced with an overview
in Table 2.

Term Explaination

observation time observation period for which start and end points are known
entity single object or individual of the observed study
event change in status (e.g. life to death, accident-free to accident)
entry starting state (e.g. birth, date of vehicle purchase)
failure time T exit time of a subject
risk set all test objects in the study

censoring
incomplete information about either entry before or/and
event after the observation time

truncation
non-observable data that either does not exist or whose entry
and exit state have not been observed

lifespan duration until an event occurs

hazard
probability that an observed entity has a certain
event at time t

Table 2: Terms in Survival Analysis.

The observation time period is described by a beginning point tstart = 0 and
an end point tend > 0 defined by a failure condition due to a special event [9]. An
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event implies a change in status, e.g., from alive to dead, from healthy to sick,
or from accident-free to accident and is usually easy to find. However, defining
the exact failure event is a more difficult task in some cases [14]. Although it is
desirable to know each the beginning and end point of an individual observed
in the study, one or both are not always observed which is known as censoring.
Figure 4 provides an overview of some typical observation types, where white
circles describe the entry state. Using our experiments with the driving simulator,
the beginning point of pedal pressing may describe the entry state. A cross
represents a change of state, such as the occurrence of a corner case due to
an impaired perception, while black circles refer to a change of state that was
triggered by unexpected reasons like an intervention out of boredom rather than
a corner case as cause of impaired perception. Observations 1 and 9 describe a
truncated state, which is non-observable data that either does not exist or whose
entry and exit state have not been observed. Observations 2, 7, 8 characterize left-
censored data as their starting points are not identifiable as they occurred prior
the observation start. In addition, observations 5 to 8 escape the observation time
unchanged, so they are referred to as right-censored as their exit event could not
be observed. In addition, the events of observations 2–4 are observed during the
observation time, with only 3 being uncensored since both start and end times
are known. Although an event was detected at observation 4, the expected event
did not occur and/or there were other causes for this condition.

observations

time

tstart tend

observation time

1

2

3

4

5

6

7

8

9

⊗
⊗

⊗

⊗

⊗
⊗

⊗
entry

expected event

unexpected event

Fig. 4: Examples of different observation types. Circles mark the beginning of
an observation, while crosses or black circles mark an event. When there is no
information about either the entry and/or the event state, this is referred to as
censoring.
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Parts of the theory of survival analysis are taken from [11], unless otherwise
stated. The continuous random variable T describes the time of occurrence of
an event, which denotes the time of death of a subject, the time of failure of
a machine, start of a disease or similar. t denotes a particular time of interest,
which can be used to describe the probability that T has not yet occurred at
time t, i.e., that the entity has survived. Accordingly, the survival function S(t)
represents the probability that the event of an entity at time t did not occur in
the observed time period, and can be formulated as follows:

S(t) = Pr(T > t) (1)

Two ways to describe a survival distribution are survival and hazard func-
tions. As a survival function, the so-called Kaplan-Meier [7] estimator is often
used, which estimates the probability that an event for an entity does not occur
within a certain time interval. It is defined as follows:

Ŝ(tj) =

j∏
i=0

ni − di
ni

(2)

The observation time tj is therefore divided into j-parts, each of which considers
a time interval ∆t = (ti, ti+1]. With n being denoted by the number of enti-
ties which are alive at ∆t and d the number of entities which already left the
observation at ∆t.

Since T is a continuous random variable, it is necessary to work with the
probability density function f(t), which describes the probability, that an event
occurs in a time interval. The cumulative density function F (t), which is the
area under the density function up to the value t, describes the probability, that
the event occurs at time T ≤ t:

F (t) =

∫ t

−∞
f(u) du (3)

On the other hand, if we consider the probability that an event will not occur
until a given time, which is what the survival function means, we can also write
the following:

S(t) = 1− F (t) (4)

In many situations, it is crucial to know how an individual risk for a particu-
lar outcome changes over time due to other events. For example, weather condi-
tions can negatively affect the lifespan of a semantic driver when the model was
not trained with such data. In addition, the use of multiple unknown weather
variables can lead to interactions, which in turn can alter a semantic driver’s
lifespan. For those cases the hazard rate h(t) indicates the probability that an
observed entity experiences a failure event the next short time interval ∆t [10].
It describes the risk of actual failure rate corresponding as a function over time.

The hazard rate is defined as:

h(t) = lim
∆t→0+

Pr(t ≤ T < t+∆t|t ≤ T )

∆t
=

f(t)

S(t)
(5)
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The cumulative hazard H(t) is used to estimate the hazard probability which
is defined as follows:

H(t) = − log(S(t)) =

∫ t

0

h(s) ds (6)

The Hazard Ratio (HR) is a measure of the relative survival experience of
two groups (A or B) and is defined as follows:

HR =
OA/EA

OB/EB
(7)

The ratio O/E describes the relative death rate of a group, where O is the
observed number of deaths and E the number of expected number of deaths.
The HR is useful to compare two individuals or groups.

The Cox PH model, introduced in 1972 [4], uses the hazard function as a
function of the influencing variables and looks as follows:

h(t,Z) = h0(t) exp

(
p∑

i=1

βiZi

)
, Z = (Z1, Z2, . . . , Zp), (8)

where h0 describes the baseline hazard, which depends only on time and is there-
fore equivalent to the Kaplan-Meier estimator. Z denotes the influence variables,
which are time-independent and β the regression coefficients of the influence
variables to be estimated.

The Cox model is often called proportional hazards model since the ratio
of the risk for 2 entities with covariates Z and Z∗ is proportional. The relative
risk, also known as the hazard ratio (HR), describes that an individual with risk
factor Z will experience an event proportional to an individual with risk factor
Z∗. The relative risk is defined as follows: [10]

HR =
h(t,Z)

h(t,Z∗)
=

h0(t) exp(
∑p

i=1 βiZi)

h0(t) exp(
∑p

i=1 βiZ∗
i )

(9)

= exp

[
p∑

i=1

βi(Zi − Z∗
i )

]
(10)

It becomes noticeable that HR is independent of time.
Additionally, probabilities about the occurrence of an event can be calculated

with the hazard function so that the influence of different parameters can be
taken into account. Furthermore, events that have already occurred are included
in the calculation so that at a time di the probability of an event occurring in the
next time step can be predicted. This can be done with the partial likelihood,
including a risk set R(td) and an index set of death times D:

L(β) =

D∏
d=1

exp(
∑p

i=1 βiZdi)∑
j∈R(td)

exp(
∑p

i=1 βiZji)
(11)
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To optimize the regression coefficients we can maximize the Log-Likelihood:

β∗ = argmax log(L(β)) (12)

This is done by computing:

∇β log(L(β)) = 0 (13)

which can be solved numerically.

3.1 Experimental Design

After learning the basics of survival analysis, we will use it to find factors that
affect survival while driving in the driving simulator. We will use the setup pre-
sented in Section 2 and observe how long it takes for a corner case to occur
under different weather conditions. For this study, the previously used semantic
segmentation network Fast-SCNN [16] is trained on good weather data, which
we refer to clear, and serves as a baseline before being fine-tuned with different
weather conditions, namely rain, fog and night. Figure 5 gives an overview of the
different weather conditions. In addition, a further model is re-trained on all 3
weather conditions, referred to as mix, resulting in a total of 5 models available
for the experiments. For post-training, 2100 additional images per weather set-
ting (300 per map) are provided for training and 420 for testing. In the following,

rain fog night

Fig. 5: Overview of the used weather conditions. The grayish sky, falling water
drops as well as water puddles on the road are characteristic for rain. In the case
of fog, fine water droplets cover the image, and it is especially tough to see in
depth. Night images are characterized by many dark areas, with streetlights and
vehicle lights illuminating the scenes.

we refer to each of the weather conditions rain, fog and night as expert models,
since they are specifically trained on one domain. In contrast, all 3 weather set-
tings are available to the mix model during training, which we refer to universal
model. The baseline and universal models are tested on all five test datasets,
whereas the expert models are tested on the respective trained conditions as
well as on the clear ones. Table 3 gives an overview of the performance of all
models on the particular test data.
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model test data
clear rain fog night mix

IoUped mIoU IoUped mIoU IoUped mIoU IoUped mIoU IoUped mIoU

clear 0.487 0.759 0.368 0.586 0.024 0.207 0.063 0.191 0.123 0.321
rain 0.379 0.606 0.485 0.718 - - - - - -
fog 0.074 0.130 - - 0.301 0.596 - - - -
night 0.292 0.302 - - - - 0.402 0.655 - -
mix 0.451 0.657 0.471 0.734 0.326 0.644 0.369 0.694 0.402 0.682

Table 3: Test data performance for all 5 models.

The evaluation of the initial model shows a significant decrease of all IoU
values in any weather conditions, with the safety-critical class human below 0.1
for fog and night being awful. In contrast, the performance of the universal
model remains largely the same. Additionally, compared to the mix model, the
expert networks perform better in rain and night and worse in fog for the human
class. In the mIoU, the universal model always outperforms the experts. This
comparison has already shown the tendency for the expert models to perform at
least as well or even slightly better than the universal model in the human class,
while the overall performance in the mIoU is best for the universal model in all
weather conditions. The next step is to conduct the weather driving campaign,
where each model is also tested under these weather conditions in order to obtain
a reliable statement about its performance in test.

The experiments are conducted as described in [12], so that two drivers drive
freely on the roads of CARLA. During the rides, the semantic driver has full
control over the vehicle, while the safety driver observes the rides and should
intervene in the scene only in safety-critical driving situations using the brake
pedal or the steering wheel. Intervention indicates incorrect assessment of the
scene, which is a corner case of the Method Layer. Differences from the previous
driving campaigns include the number of maps and the duration of the rides.
This time, the focus is only on Town01 and Town03, since they have a high vari-
ability and due to their moderate size the number of vehicles and pedestrians
does not need to be set excessively high in order to consistently see some, which
relieves the traffic manager and thus computations on the CPU. In addition to
the reduced number of maps, the drives will be limited to 600 seconds. If no
corner case occurs during this time, the drive is stopped, which corresponds to
a right-censored observation. In addition, the drivers didn’t know what data the
network had been trained on during the experiments as well as what weather
condition they were driving in. The baseline and universal models are tested for
120 minutes on each weather setting (clear, rain, fog, night). In addition, the ex-
pert models are tested on the respective weather condition, also for 120 minutes
each. In total, this results in 1320 minutes with 11 different combinations.
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clear rain fog night

baseline model

expert model rain

expert model fog

expert model night

universal model

Fig. 6: Model outputs on each weather setup. Under the baseline model, it would
be still possible to drive in rain, whereas fog and night would become a risk. The
expert models perform well in their domain but quite worse in the other ones.
On the other hand, the universal model performs sufficiently well in all weather
conditions.

3.2 Results

A total of 160 drives with a maximum length of 600 seconds were performed.
If no corner case occurs in this time, the drives are aborted so that we have
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a right-censored data point. Therefore, the number of rides per combination
varies, as models in which a corner case appears more quickly can also be driven
more frequently. The software used for survival analysis is lifelines [5]. Table 4
presents the total number of corner cases registered with respect to the trained
model and the weather conditions driven. As we can see, there are barely corner
cases in the expert models, which is why we group them together in their own
model type, the experts type. All observations during the study are visualized
in Figure 7(a). In total, we have 48 observations of corner cases that can be used
for survival analysis. Furthermore, the two students drove 406.838 km on the
virtual streets of CARLA.

model type trained
tested

clear rain fog night

baseline clear 4 5 13 17

experts
rain - 0 - -
fog - - 0 -
night - - - 1

universal mix 1 3 1 3

Table 4: List of all observed corner cases during weather campaign by model and
tested weather condition.

As a first step, we consider the plot for the Kaplan-Meier estimation in Fig-
ure 7(b) for the 3 model types baseline, universal and experts, which shows that
the probability of a corner case occurring is lowest for the expert network, closely
followed by the universal network. The baseline model seems to be very sensitive
to different weather conditions, which is why there is only a survival probabil-
ity of 63.24% after 300 seconds and at the end of the observation period only
42.65%.

We then use the Cox PH model to obtain the regression coefficients. For this,
the input variables must first be preprocessed. For the weather parameter rain
the values can range from 70 to 100 and for fog from 50 to 100. The parameter
night is assigned to a Boolean variable and the value 1 is set as soon as the sun
position parameter (∈ [−90, 90]) is < 0. Additionally, we distinguish on which
model we are driving, for this we use also a Boolean variable and set a 1 for
either the expert model or the universal model.

Table 5 shows the evaluations of the Cox-PH. The analysis demonstrates that
3 covariates can be classified as significant, as their confidence interval is below
0.05. Fog is significant with 92% and rain even only with 58%.

The hazard rate is calculated using the expert model as an example. Since
this value is a boolean variable, it can be calculated as follows:

HRexpert =
hexpert=1(t)

hexpert=0(t)
= 0.02 (14)



survAIval: Survival Analysis with the Eyes of AI 15

(a) lifespans (b) Kaplan-Meier estimation

Fig. 7: (a) Lifespans of all observations during the study. Red lines show the oc-
currence of a corner case, whereas blue lines are right-censored. The majority of
the drives, approx. 70%, did not lead to a corner case. (b) Kaplan-Meier estima-
tion for all model types. The probability that no corner case occurs is highest in
the expert models, followed by the universal model. The poor generalizability in
bad weather provides that the survival probability in the base model decreases
significantly over time.

Fig. 8: The comparison of the hazard ratios shows that the night ensures that a
corner case is more likely to occur. If an expert or universal model is used instead,
a corner case occurs less frequently, which is also evident from the Kaplan-Meier
estimate.

Driving with an expert model reduces the hazard rate by 98% with a low ranging
confidence interval.

Next we have a closer look to the probabilities for all models in different
weather conditions. Figure 9 shows the performance for all models over time
and for the weather conditions rain, fog, night. The baseline model has the
biggest problems when driving on unseen weather conditions, with the highest
probability of a corner case occurring at night. It also appears to be the most
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covariate
Hazard Ratio

HR
95% confidence interval

for the hazard ratio
confidence level

p

rain 1.01 0.99 - 1.02 0.42
fog 1.01 1.00 - 1.02 0.08
night 5.83 2.23 - 15.22 < 0.005
experts 0.02 0.00 - 0.17 < 0.005
universal 0.17 0.08 - 0.38 < 0.005

Table 5: Cox PH model

problematic for the universal and expert models, with significantly higher sur-
vival probabilities. The comparison between the universal and the expert models
indicates that the latter perform noticeably better on their trained domains than
the universal models.

(a) baseline (b) universal (c) experts

Fig. 9: The survival probabilities for rain, fog and night clearly show that the
baseline model struggles with all bad weather settings. The universal model
seems to be more robust, but the probability of survival at night also drops to
69% at the end of the study, whereas the expert model assures a survival of 95%.

4 CONCLUSION

Due to the lack of explanation and transparency in the decision-making of to-
day’s AI algorithms, we developed an experimental setup that allows visualizing
these decisions and thus allows a human driver to evaluate the driving situations
while driving with the eyes of AI, and from this to extract data that includes
safety-critical driving situations. Our self-developed test rig provides two human
drivers controlling the ego vehicle in the virtual world of CARLA. The seman-
tic driver receives the output of a semantic segmentation network in real-time,
based on which she or he is supposed to navigate in the virtual world. The second
driver takes the role of the driving instructor and intervenes in dangerous driving
situations caused by misjudgments of the AI. We consider driver interventions
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by the safety driver as safety-critical corner cases which subsequently replaced
part of the initial training data. We were able to show that targeted data en-
richment with corner cases created with limited perception leads to improved
pedestrian detection in critical situations. In addition, we continue the further
development of AI by means of human risk perception to identify situations that
are particularly important to humans and thus train the AI precisely where it
is particularly challenged by a human perspective.

The experimental setup with its components, the software used and the in-
ference sensor have already been described in detail in [12], as well as the proof
that corner cases occur less frequently when they are generated by a driving sim-
ulator with weak perception and then used for training. Based on this, survival
analysis was used to investigate whether universal models could be replaced by
expert models trained for specific domains only, in order to save development
time for the application. Although the validity of such a few data points must be
treated with caution, a trend does seem to emerge, namely that the use of expert
models indeed seems to be more appropriate, as an omniscient model has to find
a balance to perform well in each domain. Therefore, it may be useful to focus
on some basic data and add other models for special cases that are temporarily
responsible for prediction. Examples of use would be driving in left-hand traffic
or in snowy winter regions, so that an appropriately trained model could be
used. It would also be conceivable to have a separate trained model for each
country that may be used when crossing borders. This solution might be based
on the vehicle’s GPS coordinates and would not require an additional upstream
classification network.
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