Abstract
The paper introduces a novel and extensible approach to generating labelled data called the Peer Data Labelling System (PDLS), suitable for training supervised Machine Learning algorithms for use in CCI research and development. The novelty is in classifying one child’s engagement using peer observation by another child, thus reducing the two-stage process of detection and inference common in emotion recognition to a single phase. In doing so, this technique preserves context at the point of inference, reducing the time and cost of labelling data retrospectively and stays true to the CCI principle of keeping child-participation central to the design process. We evaluate the approach using the usability metrics of effectiveness, efficiency, and satisfaction. PDLS is judged to be both efficient and satisfactory. Further work is required to judge its effectiveness, but initial indications are encouraging and indicate that the children were consistent in their perceptions of engagement and disengagement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bishay, M., Preston, K., Strafuss, M., Page, G., Turcot, J., Mavadati, M.: Affdex 2.0: a real-time facial expression analysis toolkit. arXiv preprint arXiv:2202.12059 (2022)
Bryant, D., Howard, A.: A comparative analysis of emotion-detecting AI systems with respect to algorithm performance and dataset diversity. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 377–382 (2019)
Christenson, S., Reschly, A.L., Wylie, C., et al.: Handbook of research on student engagement, vol. 840. Springer (2012)
Chromik, M., Butz, A.: Human-XAI interaction: a review and design principles for explanation user interfaces. In: Ardito, C., Lanzilotti, R., Malizia, A., Petrie, H., Piccinno, A., Desolda, G., Inkpen, K. (eds.) INTERACT 2021. LNCS, vol. 12933, pp. 619–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85616-8_36
Coughlan, S.: Why did the a-level algorithm say no? August 2020. https://www.bbc.co.uk/news/education-53787203. Accessed on 06.01.2023
Desolda, G., Esposito, A., Lanzilotti, R., Costabile, M.F.: Detecting emotions through machine learning for automatic UX evaluation. In: Ardito, C., Lanzilotti, R., Malizia, A., Petrie, H., Piccinno, A., Desolda, G., Inkpen, K. (eds.) INTERACT 2021. LNCS, vol. 12934, pp. 270–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85613-7_19
Dietz, G., King Chen, J., Beason, J., Tarrow, M., Hilliard, A., Shapiro, R.B.: Artonomous: introducing middle school students to reinforcement learning through virtual robotics. In: Interaction Design and Children, IDC 2022, pp. 430–441. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3501712.3529736
Druin, A.: The role of children in the design of new technology. Behav. Inf. Technol. 21(1), 1–25 (2002)
Durand, K., Gallay, M., Seigneuric, A., Robichon, F., Baudouin, J.Y.: The development of facial emotion recognition: the role of configural information. J. Exp. Child Psychol. 97(1), 14–27 (2007)
Ekman, P.: Facial action coding system, January 2020. https://www.paulekman.com/facial-action-coding-system/
Ekman, P., Friesen, W.V.: Facial action coding system. Environmental Psychology & Nonverbal Behavior (1978)
Groccia, J.E.: What is student engagement? New Dir. Teach. Learn. 2018(154), 11–20 (2018)
Gross, A.L., Ballif, B.: Children’s understanding of emotion from facial expressions and situations: a review. Dev. Rev. 11(4), 368–398 (1991)
Hourcade, J.P.: Child-computer interaction. Self, Iowa City, Iowa (2015)
Inkpen, K.: Three important research agendas for educational multimedia: learning, children, and gender. In: AACE World Conference on Educational Multimedia and Hypermedia, vol. 97, pp. 521–526. Citeseer (1997)
Iso - international organization for standardization. iso 9241–11:2018(en) ergonomics of human-system interaction - part 11: Usability: Definitions and concepts (2018). https://www.iso.org/obp/ui/. Accessed 18 Jan 2023
Jasim, M., Collins, C., Sarvghad, A., Mahyar, N.: Supporting serendipitous discovery and balanced analysis of online product reviews with interaction-driven metrics and bias-mitigating suggestions. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI 2022. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3491102.3517649
Jiang, H., Nachum, O.: Identifying and correcting label bias in machine learning. In: International Conference on Artificial Intelligence and Statistics, pp. 702–712. PMLR (2020)
Littlewort, G., et al.: The computer expression recognition toolbox (cert). In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 298–305. IEEE (2011)
McDuff, D., Mahmoud, A., Mavadati, M., Amr, M., Turcot, J., Kaliouby, R.e.: Affdex SDK: a cross-platform real-time multi-face expression recognition toolkit. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 3723–3726 (2016)
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021)
Nguyen, H.: Examining teenagers’ perceptions of conversational agents in learning settings. In: Interaction Design and Children, IDC 2022, pp. 374–381. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3501712.3529740
Pollak, S.D., Messner, M., Kistler, D.J., Cohn, J.F.: Development of perceptual expertise in emotion recognition. Cognition 110(2), 242–247 (2009)
Databases (a-z) - face image databases - research guides at Princeton university January 2022. https://libguides.princeton.edu/facedatabases. Accessed 18 January 2023
Read, J.C., Horton, M., Fitton, D., Sim, G.: Empowered and informed: participation of children in HCI. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514, pp. 431–446. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67684-5_27
Rubegni, E., Malinverni, L., Yip, J.: “Don’t let the robots walk our dogs, but it’s ok for them to do our homework”: children’s perceptions, fears, and hopes in social robots. In: Interaction Design and Children, IDC 2022, pp. 352–361. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3501712.3529726
Scaife, M., Rogers, Y., Aldrich, F., Davies, M.: Designing for or designing with? informant design for interactive learning environments. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 343–350 (1997)
Theurel, A., Witt, A., Malsert, J., Lejeune, F., Fiorentini, C., Barisnikov, K., Gentaz, E.: The integration of visual context information in facial emotion recognition in 5-to 15-year-olds. J. Exp. Child Psychol. 150, 252–271 (2016)
Widen, S.C.: Children’s interpretation of facial expressions: the long path from valence-based to specific discrete categories. Emot. Rev. 5(1), 72–77 (2013)
Zhao, Y., Watterston, J.: The changes we need: education post covid-19. J. Educ. Change 22(1), 3–12 (2021)
Acknowledgments
We would like to thank the Head Teacher, staff and pupils of Ribblesdale High School and in particular the Head of Computer Science, Mr Steven Kay for their invaluable assistance and participation in this study.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Parsonage, G., Horton, M., Read, J. (2023). The Peer Data Labelling System (PDLS). A Participatory Approach to Classifying Engagement in the Classroom. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-42283-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42282-9
Online ISBN: 978-3-031-42283-6
eBook Packages: Computer ScienceComputer Science (R0)