Skip to main content

The Peer Data Labelling System (PDLS). A Participatory Approach to Classifying Engagement in the Classroom

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14143))

Included in the following conference series:

Abstract

The paper introduces a novel and extensible approach to generating labelled data called the Peer Data Labelling System (PDLS), suitable for training supervised Machine Learning algorithms for use in CCI research and development. The novelty is in classifying one child’s engagement using peer observation by another child, thus reducing the two-stage process of detection and inference common in emotion recognition to a single phase. In doing so, this technique preserves context at the point of inference, reducing the time and cost of labelling data retrospectively and stays true to the CCI principle of keeping child-participation central to the design process. We evaluate the approach using the usability metrics of effectiveness, efficiency, and satisfaction. PDLS is judged to be both efficient and satisfactory. Further work is required to judge its effectiveness, but initial indications are encouraging and indicate that the children were consistent in their perceptions of engagement and disengagement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishay, M., Preston, K., Strafuss, M., Page, G., Turcot, J., Mavadati, M.: Affdex 2.0: a real-time facial expression analysis toolkit. arXiv preprint arXiv:2202.12059 (2022)

  2. Bryant, D., Howard, A.: A comparative analysis of emotion-detecting AI systems with respect to algorithm performance and dataset diversity. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 377–382 (2019)

    Google Scholar 

  3. Christenson, S., Reschly, A.L., Wylie, C., et al.: Handbook of research on student engagement, vol. 840. Springer (2012)

    Google Scholar 

  4. Chromik, M., Butz, A.: Human-XAI interaction: a review and design principles for explanation user interfaces. In: Ardito, C., Lanzilotti, R., Malizia, A., Petrie, H., Piccinno, A., Desolda, G., Inkpen, K. (eds.) INTERACT 2021. LNCS, vol. 12933, pp. 619–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85616-8_36

    Chapter  Google Scholar 

  5. Coughlan, S.: Why did the a-level algorithm say no? August 2020. https://www.bbc.co.uk/news/education-53787203. Accessed on 06.01.2023

  6. Desolda, G., Esposito, A., Lanzilotti, R., Costabile, M.F.: Detecting emotions through machine learning for automatic UX evaluation. In: Ardito, C., Lanzilotti, R., Malizia, A., Petrie, H., Piccinno, A., Desolda, G., Inkpen, K. (eds.) INTERACT 2021. LNCS, vol. 12934, pp. 270–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85613-7_19

    Chapter  Google Scholar 

  7. Dietz, G., King Chen, J., Beason, J., Tarrow, M., Hilliard, A., Shapiro, R.B.: Artonomous: introducing middle school students to reinforcement learning through virtual robotics. In: Interaction Design and Children, IDC 2022, pp. 430–441. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3501712.3529736

  8. Druin, A.: The role of children in the design of new technology. Behav. Inf. Technol. 21(1), 1–25 (2002)

    Article  Google Scholar 

  9. Durand, K., Gallay, M., Seigneuric, A., Robichon, F., Baudouin, J.Y.: The development of facial emotion recognition: the role of configural information. J. Exp. Child Psychol. 97(1), 14–27 (2007)

    Article  Google Scholar 

  10. Ekman, P.: Facial action coding system, January 2020. https://www.paulekman.com/facial-action-coding-system/

  11. Ekman, P., Friesen, W.V.: Facial action coding system. Environmental Psychology & Nonverbal Behavior (1978)

    Google Scholar 

  12. Groccia, J.E.: What is student engagement? New Dir. Teach. Learn. 2018(154), 11–20 (2018)

    Article  Google Scholar 

  13. Gross, A.L., Ballif, B.: Children’s understanding of emotion from facial expressions and situations: a review. Dev. Rev. 11(4), 368–398 (1991)

    Article  Google Scholar 

  14. Hourcade, J.P.: Child-computer interaction. Self, Iowa City, Iowa (2015)

    Google Scholar 

  15. Inkpen, K.: Three important research agendas for educational multimedia: learning, children, and gender. In: AACE World Conference on Educational Multimedia and Hypermedia, vol. 97, pp. 521–526. Citeseer (1997)

    Google Scholar 

  16. Iso - international organization for standardization. iso 9241–11:2018(en) ergonomics of human-system interaction - part 11: Usability: Definitions and concepts (2018). https://www.iso.org/obp/ui/. Accessed 18 Jan 2023

  17. Jasim, M., Collins, C., Sarvghad, A., Mahyar, N.: Supporting serendipitous discovery and balanced analysis of online product reviews with interaction-driven metrics and bias-mitigating suggestions. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI 2022. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3491102.3517649

  18. Jiang, H., Nachum, O.: Identifying and correcting label bias in machine learning. In: International Conference on Artificial Intelligence and Statistics, pp. 702–712. PMLR (2020)

    Google Scholar 

  19. Littlewort, G., et al.: The computer expression recognition toolbox (cert). In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 298–305. IEEE (2011)

    Google Scholar 

  20. McDuff, D., Mahmoud, A., Mavadati, M., Amr, M., Turcot, J., Kaliouby, R.e.: Affdex SDK: a cross-platform real-time multi-face expression recognition toolkit. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 3723–3726 (2016)

    Google Scholar 

  21. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021)

    Article  Google Scholar 

  22. Nguyen, H.: Examining teenagers’ perceptions of conversational agents in learning settings. In: Interaction Design and Children, IDC 2022, pp. 374–381. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3501712.3529740

  23. Pollak, S.D., Messner, M., Kistler, D.J., Cohn, J.F.: Development of perceptual expertise in emotion recognition. Cognition 110(2), 242–247 (2009)

    Article  Google Scholar 

  24. Databases (a-z) - face image databases - research guides at Princeton university January 2022. https://libguides.princeton.edu/facedatabases. Accessed 18 January 2023

  25. Read, J.C., Horton, M., Fitton, D., Sim, G.: Empowered and informed: participation of children in HCI. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514, pp. 431–446. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67684-5_27

    Chapter  Google Scholar 

  26. Rubegni, E., Malinverni, L., Yip, J.: “Don’t let the robots walk our dogs, but it’s ok for them to do our homework”: children’s perceptions, fears, and hopes in social robots. In: Interaction Design and Children, IDC 2022, pp. 352–361. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3501712.3529726

  27. Scaife, M., Rogers, Y., Aldrich, F., Davies, M.: Designing for or designing with? informant design for interactive learning environments. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 343–350 (1997)

    Google Scholar 

  28. Theurel, A., Witt, A., Malsert, J., Lejeune, F., Fiorentini, C., Barisnikov, K., Gentaz, E.: The integration of visual context information in facial emotion recognition in 5-to 15-year-olds. J. Exp. Child Psychol. 150, 252–271 (2016)

    Article  Google Scholar 

  29. Widen, S.C.: Children’s interpretation of facial expressions: the long path from valence-based to specific discrete categories. Emot. Rev. 5(1), 72–77 (2013)

    Article  Google Scholar 

  30. Zhao, Y., Watterston, J.: The changes we need: education post covid-19. J. Educ. Change 22(1), 3–12 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Head Teacher, staff and pupils of Ribblesdale High School and in particular the Head of Computer Science, Mr Steven Kay for their invaluable assistance and participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Parsonage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parsonage, G., Horton, M., Read, J. (2023). The Peer Data Labelling System (PDLS). A Participatory Approach to Classifying Engagement in the Classroom. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42283-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42282-9

  • Online ISBN: 978-3-031-42283-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics