Abstract
The use of different locomotion techniques such as walking or teleportation affects the way people explore and build an understanding of complex data in immersive visualizations. We report results from a quantitative user study (14 participants) comparing the effect of room-scale real walking versus teleportation on information search and task performance in a word-cloud immersive visualization. Participants performed an ordering task and we measured performance, post-task recall, workload and flow. Results suggest that room-scale real walking favors interaction and short-term recall but could imply higher workload.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrews, C., Endert, A., North, C.: Space to think: large high-resolution displays for sensemaking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 55–64 (2010)
Bakker, N.H., Passenier, P.O., Werkhoven, P.J.: Effects of head-slaved navigation and the use of teleports on spatial orientation in virtual environments. Hum. Factors 45(1), 160–169 (2003)
Ball, R., North, C.: The effects of peripheral vision and physical navigation on large scale visualization. In: Proceedings of Graphics Interface 2008, pp. 9–16 (2008)
Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1(4), 24 (2017)
Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pp. 205–216 (2016)
Cardoso, J.C., Perrotta, A.: A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays. Comput. Graph. 85, 55–73 (2019)
Carrion, B., Onorati, T., Díaz, P., Triga, V.: A taxonomy generation tool for semantic visual analysis of large corpus of documents. Multimed. Tools Appl. 78(23), 32919–32937 (2019). https://doi.org/10.1007/s11042-019-07880-y
Chance, S.S., Gaunet, F., Beall, A.C., Loomis, J.M.: Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence 7(2), 168–178 (1998)
Di Luca, M., Seifi, H., Egan, S., Gonzalez-Franco, M.: Locomotion vault: the extra mile in analyzing VR locomotion techniques. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–10 (2021)
Drogemuller, A., Cunningham, A., Walsh, J., Cordeil, M., Ross, W., Thomas, B.: Evaluating navigation techniques for 3d graph visualizations in virtual reality. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), pp. 1–10. IEEE (2018)
Endert, A., et al.: The state of the art in integrating machine learning into visual analytics. In: Computer Graphics Forum, vol. 36, pp. 458–486. Wiley Online Library (2017)
Ens, B., et al.: Grand challenges in immersive analytics. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI ’21, Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3411764.3446866
Eysenck, M.W.: Anxiety and attention. Anxiety Res. 1(1), 9–15 (1988)
Gibson, E.J.: Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annu. Rev. Psychol. 39(1), 1–42 (1988)
Hamari, J., Shernoff, D.J., Rowe, E., Coller, B., Asbell-Clarke, J., Edwards, T.: Challenging games help students learn: an empirical study on engagement, flow and immersion in game-based learning. Comput. Hum. Behav. 54, 170–179 (2016)
Hart, S.G., Staveland, L.E.: Development of nasa-tlx (task load index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)
Heimerl, F., Lohmann, S., Lange, S., Ertl, T.: Word cloud explorer: text analytics based on word clouds. In: 2014 47th Hawaii International Conference on System Sciences, pp. 1833–1842 (2014). https://doi.org/10.1109/HICSS.2014.231
Kraus, M., et al.: Immersive analytics with abstract 3d visualizations: a survey. In: Computer Graphics Forum, vol. 41, pp. 201–229. Wiley Online Library (2022)
Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Trans. Visual Comput. Graphics 22(7), 1802–1815 (2016)
Lages, W.S., Bowman, D.A.: Move the object or move myself? walking vs. manipulation for the examination of 3d scientific data. Frontiers in ICT 5, 15 (2018)
Lisle, L., Davidson, K., Gitre, E.J., North, C., Bowman, D.A.: Sensemaking strategies with immersive space to think. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pp. 529–537. IEEE (2021)
Marriott, K., et al.: Immersive analytics, vol. 11190. Springer (2018)
Peck, T.C., Fuchs, H., Whitton, M.C.: An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotio interfaces. In: 2011 IEEE Virtual Reality Conference, pp. 55–62. IEEE (2011)
Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of International Conference on Intelligence Analysis, vol. 5, pp. 2–4. McLean, VA, USA (2005)
Reski, N., Alissandrakis, A.: Open data exploration in virtual reality: a comparative study of input technology. Virtual Reality 24(1), 1–22 (2020)
Rheinberg, F., Vollmeyer, R., Engeser, S.: Flow short scale. PsycTESTS Dataset (2003)
Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput.-Hum. Interact. (TOCHI) 16(1), 1–18 (2009)
Sayyad, E., Sra, M., Höllerer, T.: Walking and teleportation in wide-area virtual reality experiences. In: 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 608–617 (2020). https://doi.org/10.1109/ISMAR50242.2020.00088
Skarbez, R., Polys, N.F., Ogle, J.T., North, C., Bowman, D.A.: Immersive analytics: theory and research agenda. Front. Robot. AI 6, 82 (2019)
Suma, E.A., Finkelstein, S.L., Reid, M., Ulinski, A., Hodges, L.F.: Real walking increases simulator sickness in navigationally complex virtual environments. In: 2009 IEEE Virtual Reality Conference, pp. 245–246. IEEE (2009)
Whitlock, M., Smart, S., Szafir, D.A.: Graphical perception for immersive analytics. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 616–625. IEEE (2020)
Zanbaka, C.A., Lok, B.C., Babu, S.V., Ulinski, A.C., Hodges, L.F.: Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment. IEEE Trans. Visual Comput. Graphics 11(6), 694–705 (2005)
Acknowledgements
This work is supported by the Spanish State Research Agency (AEI) under grant Sense2MakeSense (PID2019-109388GB-I00) and CrossColab (PGC2018-101884-B-I00).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 105496 KB)
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rey, A., Bellucci, A., Díaz, P., Aedo, I. (2023). The Effect of Teleporting Versus Room-Scale Walking for Interacting with Immersive Visualizations. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-42283-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42282-9
Online ISBN: 978-3-031-42283-6
eBook Packages: Computer ScienceComputer Science (R0)