Skip to main content

The Effect of Teleporting Versus Room-Scale Walking for Interacting with Immersive Visualizations

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Abstract

The use of different locomotion techniques such as walking or teleportation affects the way people explore and build an understanding of complex data in immersive visualizations. We report results from a quantitative user study (14 participants) comparing the effect of room-scale real walking versus teleportation on information search and task performance in a word-cloud immersive visualization. Participants performed an ordering task and we measured performance, post-task recall, workload and flow. Results suggest that room-scale real walking favors interaction and short-term recall but could imply higher workload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, C., Endert, A., North, C.: Space to think: large high-resolution displays for sensemaking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 55–64 (2010)

    Google Scholar 

  2. Bakker, N.H., Passenier, P.O., Werkhoven, P.J.: Effects of head-slaved navigation and the use of teleports on spatial orientation in virtual environments. Hum. Factors 45(1), 160–169 (2003)

    Article  Google Scholar 

  3. Ball, R., North, C.: The effects of peripheral vision and physical navigation on large scale visualization. In: Proceedings of Graphics Interface 2008, pp. 9–16 (2008)

    Google Scholar 

  4. Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1(4), 24 (2017)

    Article  Google Scholar 

  5. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pp. 205–216 (2016)

    Google Scholar 

  6. Cardoso, J.C., Perrotta, A.: A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays. Comput. Graph. 85, 55–73 (2019)

    Article  Google Scholar 

  7. Carrion, B., Onorati, T., Díaz, P., Triga, V.: A taxonomy generation tool for semantic visual analysis of large corpus of documents. Multimed. Tools Appl. 78(23), 32919–32937 (2019). https://doi.org/10.1007/s11042-019-07880-y

    Article  Google Scholar 

  8. Chance, S.S., Gaunet, F., Beall, A.C., Loomis, J.M.: Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence 7(2), 168–178 (1998)

    Article  Google Scholar 

  9. Di Luca, M., Seifi, H., Egan, S., Gonzalez-Franco, M.: Locomotion vault: the extra mile in analyzing VR locomotion techniques. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–10 (2021)

    Google Scholar 

  10. Drogemuller, A., Cunningham, A., Walsh, J., Cordeil, M., Ross, W., Thomas, B.: Evaluating navigation techniques for 3d graph visualizations in virtual reality. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), pp. 1–10. IEEE (2018)

    Google Scholar 

  11. Endert, A., et al.: The state of the art in integrating machine learning into visual analytics. In: Computer Graphics Forum, vol. 36, pp. 458–486. Wiley Online Library (2017)

    Google Scholar 

  12. Ens, B., et al.: Grand challenges in immersive analytics. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI ’21, Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3411764.3446866

  13. Eysenck, M.W.: Anxiety and attention. Anxiety Res. 1(1), 9–15 (1988)

    Article  Google Scholar 

  14. Gibson, E.J.: Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annu. Rev. Psychol. 39(1), 1–42 (1988)

    Article  Google Scholar 

  15. Hamari, J., Shernoff, D.J., Rowe, E., Coller, B., Asbell-Clarke, J., Edwards, T.: Challenging games help students learn: an empirical study on engagement, flow and immersion in game-based learning. Comput. Hum. Behav. 54, 170–179 (2016)

    Article  Google Scholar 

  16. Hart, S.G., Staveland, L.E.: Development of nasa-tlx (task load index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)

    Article  Google Scholar 

  17. Heimerl, F., Lohmann, S., Lange, S., Ertl, T.: Word cloud explorer: text analytics based on word clouds. In: 2014 47th Hawaii International Conference on System Sciences, pp. 1833–1842 (2014). https://doi.org/10.1109/HICSS.2014.231

  18. Kraus, M., et al.: Immersive analytics with abstract 3d visualizations: a survey. In: Computer Graphics Forum, vol. 41, pp. 201–229. Wiley Online Library (2022)

    Google Scholar 

  19. Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Trans. Visual Comput. Graphics 22(7), 1802–1815 (2016)

    Article  Google Scholar 

  20. Lages, W.S., Bowman, D.A.: Move the object or move myself? walking vs. manipulation for the examination of 3d scientific data. Frontiers in ICT 5, 15 (2018)

    Google Scholar 

  21. Lisle, L., Davidson, K., Gitre, E.J., North, C., Bowman, D.A.: Sensemaking strategies with immersive space to think. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pp. 529–537. IEEE (2021)

    Google Scholar 

  22. Marriott, K., et al.: Immersive analytics, vol. 11190. Springer (2018)

    Google Scholar 

  23. Peck, T.C., Fuchs, H., Whitton, M.C.: An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotio interfaces. In: 2011 IEEE Virtual Reality Conference, pp. 55–62. IEEE (2011)

    Google Scholar 

  24. Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of International Conference on Intelligence Analysis, vol. 5, pp. 2–4. McLean, VA, USA (2005)

    Google Scholar 

  25. Reski, N., Alissandrakis, A.: Open data exploration in virtual reality: a comparative study of input technology. Virtual Reality 24(1), 1–22 (2020)

    Article  Google Scholar 

  26. Rheinberg, F., Vollmeyer, R., Engeser, S.: Flow short scale. PsycTESTS Dataset (2003)

    Google Scholar 

  27. Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput.-Hum. Interact. (TOCHI) 16(1), 1–18 (2009)

    Article  Google Scholar 

  28. Sayyad, E., Sra, M., Höllerer, T.: Walking and teleportation in wide-area virtual reality experiences. In: 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 608–617 (2020). https://doi.org/10.1109/ISMAR50242.2020.00088

  29. Skarbez, R., Polys, N.F., Ogle, J.T., North, C., Bowman, D.A.: Immersive analytics: theory and research agenda. Front. Robot. AI 6, 82 (2019)

    Article  Google Scholar 

  30. Suma, E.A., Finkelstein, S.L., Reid, M., Ulinski, A., Hodges, L.F.: Real walking increases simulator sickness in navigationally complex virtual environments. In: 2009 IEEE Virtual Reality Conference, pp. 245–246. IEEE (2009)

    Google Scholar 

  31. Whitlock, M., Smart, S., Szafir, D.A.: Graphical perception for immersive analytics. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 616–625. IEEE (2020)

    Google Scholar 

  32. Zanbaka, C.A., Lok, B.C., Babu, S.V., Ulinski, A.C., Hodges, L.F.: Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment. IEEE Trans. Visual Comput. Graphics 11(6), 694–705 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Spanish State Research Agency (AEI) under grant Sense2MakeSense (PID2019-109388GB-I00) and CrossColab (PGC2018-101884-B-I00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Rey , Andrea Bellucci , Paloma Díaz or Ignacio Aedo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 105496 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rey, A., Bellucci, A., Díaz, P., Aedo, I. (2023). The Effect of Teleporting Versus Room-Scale Walking for Interacting with Immersive Visualizations. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42283-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42282-9

  • Online ISBN: 978-3-031-42283-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics