Skip to main content

Interaction-Based Offline Runtime Verification of Distributed Systems

  • Conference paper
  • First Online:
Fundamentals of Software Engineering (FSEN 2023)

Abstract

Interactions are formal models describing asynchronous communications within a distributed system. They can be drawn in the fashion of sequence diagrams and associated with an operational semantics in the style of process algebras. In this paper, we propose an algorithm for offline runtime verification against interactions. Our algorithm deals with observability issues e.g. that some subsystems may not be observed or that some events may not be observed when the end of monitoring on different subsystems cannot be synchronized. We prove the algorithm’s correctness and assess the performance of an implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given a family \((A_i)_{i \in I}\) of sets indexed by a finite set I, \(\prod _{i \in I} A_i\) is the set of tuples \((a_1, \ldots , a_i,\ldots )\) with \(\forall i \in I, a_i \in A_i\).

  2. 2.

    We overload the notation \(\textsf{rmv}_h\) which applies to both multitraces and interactions.

References

  1. SATLIB - Benchmark. https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

  2. Varisat CDCL solver. https://docs.rs/varisat/latest/varisat/

  3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 797–808. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_65

    Chapter  MATH  Google Scholar 

  4. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Coping with bad agent interaction protocols when monitoring partially observable multiagent systems. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 59–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94580-4_5

    Chapter  Google Scholar 

  5. Bakillah, M., Liang, S., Zipf, A., Mostafavi, M.A.: A dynamic and context-aware semantic mediation service for discovering and fusion of heterogeneous sensor data. J. Spatial Inform. Sci. 6, 155–185 (06 2013)

    Google Scholar 

  6. Bejleri, A., Domnori, E., Viering, M., Eugster, P., Mezini, M.: Comprehensive multiparty session types. The Art, Science, and Engineering of Programming 3 (02 2019)

    Google Scholar 

  7. Benharrat, N., Gaston, C., Hierons, R.M., Lapitre, A., Le Gall, P.: Constraint-based oracles for timed distributed systems. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 276–292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67549-7_17

    Chapter  Google Scholar 

  8. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavalcanti, A., Gaudel, M.-C., Hierons, R.M.: Conformance relations for distributed testing based on CSP. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019, pp. 48–63. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24580-0_5

    Chapter  Google Scholar 

  10. Dan, H., Hierons, R.M.: The oracle problem when testing from MSCs. Comput. J. 57(7), 987–1001 (2014)

    Article  Google Scholar 

  11. Hierons, R.M., Merayo, M.G., Núñez, M.: Controllable test cases for the distributed test architecture. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 201–215. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6_16

    Chapter  MATH  Google Scholar 

  12. Hierons, R.M., Merayo, M.G., Núñez, M.: Scenarios-based testing of systems with distributed ports. Softw. Pract. Exp. 41(10), 999–1026 (2011)

    Google Scholar 

  13. Inçki, K., Ari, I.: A novel runtime verification solution for IoT Systems. IEEE Access 6, 13501–13512 (2018)

    Article  Google Scholar 

  14. ITU: Message Sequence Chart (MSC). http://www.itu.int/rec/T-REC-Z.120

  15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In: Concurrency: the Works of Leslie Lamport, pp. 179–196. ACM (2019)

    Google Scholar 

  16. Mace, J., Roelke, R., Fonseca, R.: Pivot tracing: dynamic causal monitoring for distributed systems. In: SOSP, pp. 378–393. ACM (2015)

    Google Scholar 

  17. Mahé, E.: Hibou tool. http://www.github.com/erwanM974/hibou_label (2022)

  18. Mahé, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: A small-step approach to multi-trace checking against interactions, pp. 1815–1822. SAC ’21, ACM (2021)

    Google Scholar 

  19. Mahé, E., Bannour, B., Gaston, C., Lapitre, A., Le Gall, P.: Dealing with observability in interaction-based offline runtime verification of distributed systems. CoRR (2022). https://arxiv.org/abs/2212.09324

  20. Mahé, E., Gaston, C., Le Gall, P.: Revisiting Semantics of Interactions for Trace Validity Analysis. In: FASE 2020. LNCS, vol. 5311, pp. 482–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45234-6_24

  21. Mahé, E., Gaston, C., Le Gall, P.: Equivalence of denotational and operational semantics for interaction languages. In: TASE. pp. 113–130. Springer (2022). https://doi.org/10.1007/978-3-031-10363-6_8

  22. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL Forum. pp. 291–306. Elsevier (1997)

    Google Scholar 

  23. Neves, F., Machado, N., Pereira, J.: Falcon: A practical log-based analysis tool for distributed systems. In: DSN, pp. 534–541. IEEE Computer Society (2018)

    Google Scholar 

  24. Nguyen, H.N., Poizat, P., Zaïdi, F.: Passive conformance testing of service choreographies. In: ACM SAC 2012, pp. 1528–1535 (2012)

    Google Scholar 

  25. OMG: Unified Modeling Language, http://www.uml.org

  26. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced application domains (beyond software). Formal Methods in System Design , pp. 1–57 (2019). https://doi.org/10.1007/s10703-019-00337-w

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon Europe programme under grant agreement No 101069748 - SELFY project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Mahe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahe, E., Bannour, B., Gaston, C., Lapitre, A., Gall, P.L. (2023). Interaction-Based Offline Runtime Verification of Distributed Systems. In: Hojjat, H., Ábrahám, E. (eds) Fundamentals of Software Engineering. FSEN 2023. Lecture Notes in Computer Science, vol 14155 . Springer, Cham. https://doi.org/10.1007/978-3-031-42441-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42441-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42440-3

  • Online ISBN: 978-3-031-42441-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics