Skip to main content

Viscosity Estimation of Water-PVP Solutions from Droplets Using Artificial Neural Networks and Image Processing

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

The viscosity of a liquid is the property that measures the liquid internal resistance to flow. Viscosity monitoring is essential for quality control in many industrial areas, such as the chemical, pharmaceutical, and energy-related industries. Capillary viscometers are the most used instrument for measuring viscosity. Still, they are expensive and complex, which represents a challenge in industries where accurate and real-time viscosity knowledge is essential. In this work, we prepared eight solutions with different water and PVP (Polyvinylpyrrolidone) ratios, measured their different viscosity values, and produced videos of their droplets. We aimed to extract the droplets’ characteristics using image processing and to use these characteristics to train an Artificial Neural Network model to estimate the viscosity values of the solutions. The proposed model was able to predict the viscosity value of the samples using the characteristics of their droplets with an accuracy of 83.08% on the test dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viswanath, D.S., Ghosh, T.K., Prasad, D.H., Dutt, N.V., Rani, K.Y.: Viscosity of Liquids: Theory, Estimation, Experiment, and Data. Dordrecht, The Netherlands, Springer Science & Business Media (2007)

    MATH  Google Scholar 

  2. Toropainen, E., et al.: Biopharmaceutics of topical ophthalmic suspensions: Importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics 13, 452 (2021)

    Article  Google Scholar 

  3. Lokhande, A.B., Mishra, S., Kulkarni, R.D., Naik, J.B.: Influence of different viscosity grade ethylcellulose polymers on encapsulation and in vitro release study of drug loaded nanoparticles. J. Pharm. Res. 7, 414–420 (2013)

    Google Scholar 

  4. Nunes, V.M.; Lourenço, M.J.; Santos, F.J.; Nieto de Castro, C.A. Importance of accurate data on viscosity and thermal conductivity in molten salts applications. J. Chem. Eng. Data 48, 446–450 (2003)

    Google Scholar 

  5. Rashid, B., Bal, A.L., Williams, G.J., Muggeridge, A.H.: Using vorticity to quantify the relative importance of heterogeneity, viscosity ratio, gravity and diffusion on oil recovery. Comput. Geosci. 16, 409–422 (2012)

    Article  Google Scholar 

  6. Brooks, R., Dinsdale, A., Quested, P.: The measurement of viscosity of alloys-a review of methods, data and models. Meas. Sci. Technol. 16, 354 (2005)

    Article  Google Scholar 

  7. Zhu, H., Dexter, R., Fox, R., Reichard, D., Brazee, R., Ozkan, H.: Effects of polymer composition and viscosity on droplet size of recirculated spray solutions. J. Agric. Eng. Res. 67, 35–45 (1997)

    Article  Google Scholar 

  8. Gotaas, C., et al.: Effect of viscosity on droplet-droplet collision outcome: experimental study and numerical comparison. Phys. Fluids 19, 102106 (2007)

    Article  MATH  Google Scholar 

  9. Wang, Z., Liu, H., Zhang, Z., Sun, B., Zhang, J., Lou, W.: Research on the effects of liquid viscosity on droplet size in vertical gas-liquid annular flows. Chem. Eng. Sci. 220, 115621 (2020)

    Article  Google Scholar 

  10. Kheloufi, N., Lounis, M.: An optical technique for newtonian fluid viscosity measurement using multiparameter analysis. Appl. Rheol. 24, 15–22 (2014)

    Google Scholar 

  11. Santhosh, K., Shenoy, V.: Analysis of liquid viscosity by image processing techniques. Indian J. Sci. Technol. 9, 98693 (2016)

    Article  Google Scholar 

  12. Afrand, M., et al.: Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int. Commun. Heat Mass Transf. 76, 209–214 (2016)

    Article  Google Scholar 

  13. Omole, O., Falode, O., Deng, A.D.: Prediction of Nigerian crude oil viscosity using artificial neural network. Pet. Coal 51, 181–188 (2009)

    Google Scholar 

  14. Esfe, M.H., Saedodin, S., Sina, N., Afrand, M., Rostami, S.: Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int. Commun. Heat Mass Transf. 68, 50–57 (2015)

    Article  Google Scholar 

  15. Mrad, M.A., Csorba, K., Galata, D.L., Nagy, Z.K.: Classification of droplets of water-PVP solutions with different viscosity values using artificial neural networks. Processes 10, 1780 (2022)

    Article  Google Scholar 

  16. Naveenkumar, M.; Vadivel, A. OpenCV for computer vision applications. In: Proceedings of the National Conference on Big Data and Cloud Computing (NCBDC’15), Tiruchirappalli, India, 20 March, pp. 52–56 (2015)

    Google Scholar 

  17. Sharifi, M., Fathy, M., Mahmoudi, M.T.: A classified and comparative study of edge detection algorithms. In: Proceedings of the International Conference on Information Technology: Coding and Computing, Las Vegas, NV, USA 8–10, 117–120 (2002)

    Google Scholar 

  18. Bisong, E. Introduction to Scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer: New York, NY, USA, pp. 215–229 (2019)

    Google Scholar 

  19. Manaswi, N.K.: Understanding and working with Keras. In: Deep Learning with Applications Using Python, pp. 31–43. Apress, Berkeley, CA (2018). https://doi.org/10.1007/978-1-4842-3516-4_2

    Chapter  Google Scholar 

Download references

Acknowledgements

Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2019-1.3.1-KK funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Azouz Mrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mrad, M.A., Csorba, K., László Galata, D., Nagy, Z.K., Charaf, H. (2023). Viscosity Estimation of Water-PVP Solutions from Droplets Using Artificial Neural Networks and Image Processing. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42505-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42504-2

  • Online ISBN: 978-3-031-42505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics