Skip to main content

Transfer Learning from ImageNet to the Domain of Pigmented Nevi

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14125))

Included in the following conference series:

  • 261 Accesses

Abstract

The transfer learning method enables the use of a pretrained convolutional network to efficiently model a secondary domain with less data. In this article 18 public convolutional networks of different architecture and depth, pretrained on ImageNet, are tested on three optimizers (Adam, Rmsprop and SGDM), ten learning rate values and two diverse data sets (ISIC 2017 and Melanoma-ML), to choose the best one for the malignant melanoma vs. atypical (but benign) nevi classification. This is important since both types of the pigmented skin lesions can be visually very similar and difficult to distinguish. For the well-known ISIC 2017 data set, we found the best accuracy of 94.36 ± 1.66% for the ResNet 101 convolutional network with the SGDM optimizer and the learning rate of 6e-4. We show our results against the literature on the subject. The best pretrained model(s) can be easily implemented in dermoscopy systems/applications to assist skin/general physicians of all levels of training and experience and patients for premedical self-examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adegun, A., Viriri, S.: Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artif. Intell. Rev. 54(2), 811–841 (2021)

    Article  Google Scholar 

  2. Bi, L., Kim, J., Ahn, E., Feng, D.: Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv:1703.04197 (2017)

    Google Scholar 

  3. Brinker, T., et al.: Skin cancer classification using convolutional neural networks: systematic review. J. Med. Internet Res. 20(10), e11936 (2018)

    Article  Google Scholar 

  4. Cancer.net (2022). https://www.cancer.net/cancer-types/melanoma/statistics/. Accessed 30 Jan 2022

  5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv:1610.02357v3 (2017)

    Google Scholar 

  6. Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R.: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) Machine Learning in Medical Imaging. MLMI 2015. Lecture Notes in Computer Science, vol. 9352. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_15

  7. Dick, V., Sinz, C., Mittlböck, M., Kittler, H., Tschandl, P.: Accuracy of computer-aided diagnosis of melanoma: a meta-analysis. JAMA Dermatol. 155(11), 1291 (2019). https://doi.org/10.1001/jamadermatol.2019.1375

    Article  Google Scholar 

  8. Fei-Fei, L., Deng, J., Li, K.: Imagenet: constructing a large-scale image data-base. J. Vis. 9(8), 1037 (2009)

    Article  Google Scholar 

  9. Ferrante di Ruffano, L., et al.: Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. 12, CD013186 (2018)

    Google Scholar 

  10. Gao, H., Liu, Z., Van Der Maaten, L., Weinberger, K.: Densely connected convolutional networks. In: CVPR 1(2), 3 (2017)

    Google Scholar 

  11. Haenssle, H., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  12. Han, S., Kim, M., Lim, W., Park, G., Park, I., Chang, S.: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Investig. Dermatol. 138(7), 1529–1538 (2018)

    Article  Google Scholar 

  13. Harrington, E.B.C., Wesseling, N., et al.: Diagnosing malignant melanoma in ambulatory care: a systematic review of clinical prediction rules. BMJ Open 7, e014096 (2017)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hosny, K., Kassem, M., Foaud, M.: Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE 14(5), e0217293 (2019)

    Article  Google Scholar 

  16. Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size. arXiv:1602.07360 (2016)

    Google Scholar 

  17. ImageNet (2022). http://www.image-net.org/. Accessed 01 Feb 2022

  18. ISIC, https://www.isic-archive.com/topWithHeader/tightContentTop/about/. Accessed 01 Dec 2021

  19. Jaworek-Korjakowska, J., Kleczek, P., Gorgon, M.: Melanoma thickness prediction based on convolutional neural network with vgg-19 model transfer learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  20. Kareem, O., Abdulazeez, A., Zeebaree, D.: Skin lesions classification using deep learning techniques: review. Asian J. Res. Comput. Sci. 9(1), 1–22 (2021)

    Article  Google Scholar 

  21. Kassem, M., Hosny, K., Damasevicius, R., Eltoukhy, M.: Machine learning and deep learning methods for skin lesion classification and diagnosis: a systematic review. Diagnostics 11(8), 1390 (2021)

    Article  Google Scholar 

  22. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization (2021). https://doi.org/10.48550/arxiv.1412.6980/. Accessed 01 Dec 2021

  23. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  24. Liu, T., Gao, Y., Yin, W.: An improved analysis of stochastic gradient descent with momentum. Adv. Neural. Inf. Process. Syst. 30, 18261–18271 (2020)

    Google Scholar 

  25. Lopez, A., Giro-i-Nieto, X., Burdick, J., Marques, O.: Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), pp. 49–54. IEEE (2017)

    Google Scholar 

  26. Maiti, A., Chatterjee, B., Ashour, A., Dey, N.: Computer-aided diagnosis of melanoma: a review of existing knowledge and strategies. Curr. Med. Imaging 16(7), 835–854 (2020)

    Article  Google Scholar 

  27. Melanoma ML (2021). https://doi.org/10.17026/dans-zue-zz2y/. Accessed 01 Dec 2021

  28. Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F., Avila, S., Valle, E.: Knowledge transfer for melanoma screening with deep learning. In: 2017 IEEE 14th International Symposium on Biomedical Imaging, pp. 297–300 (2017)

    Google Scholar 

  29. Naeem, A., Farooq, M.S., Khelifi, A., Abid, A.: Malignant melanoma classification using deep learning: datasets, performance measurements, challenges, and opportunities. IEEE Access 8, 110575–110597 (2020)

    Article  Google Scholar 

  30. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  31. Pomponiu, V., Nejati, H., Cheung, N.M.: Deepmole: deep neural networks for skin mole lesion classification. In: 2016 IEEE International Conference on Image Processing, pp. 2623–2627 (2016)

    Google Scholar 

  32. Popescu, D., El-Khatib, M., El-Khatib, H., Ichim, L.: New trends in melanoma detection using neural networks: a systematic review. Sensors 22(2), 496 (2022)

    Article  Google Scholar 

  33. Ratul, A., Mozaffari, M., Lee, W.S., Parimbelli, E.: Skin lesions classification using deep learning based on dilated convolution. BioRxiv: 860700 (2020)

    Google Scholar 

  34. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29, 2352–2449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Razmjooy, N., et al.: Computer-aided diagnosis of skin cancer: a review. Curr. Med. Imaging 16(7), 781–793 (2020)

    Article  Google Scholar 

  36. Redmon, J.: Darknet: Open source neural networks inc (2013–2016). https://pjreddie.com/darknet/

  37. Sagar, A., Jacob, D.: Convolutional neural networks for classifying melanoma images. Biorxiv 2020–05 (2021)

    Google Scholar 

  38. Saginala, K., Barsouk, A., Aluru, J., Rawla, P., Barsouk, A.: Epidemiology of melanoma. Med. Sci. 9(4), 63 (2021)

    Google Scholar 

  39. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

    Google Scholar 

  41. Skvara, H., Teban, L., Fiebiger, M., Binder, M., Kittler, H.: Limitations of dermoscopy in the recognition of melanoma. Arch. Dermatol. 141, 155–160 (2005)

    Article  Google Scholar 

  42. Srivastava, R., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in neural information processing systems, vol. 28 (2015)

    Google Scholar 

  43. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence, p. 4 (2017)

    Google Scholar 

  44. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  45. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 2818–2826 (2016)

    Google Scholar 

  46. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv:1905.1194 (2019)

    Google Scholar 

  47. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  48. Veit, A., Wilber, M., Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. In: Advances in neural information processing systems, vol. 29 (2016)

    Google Scholar 

  49. Xiangyu, Z., Zhou, X., Lin, M.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. arXiv:1707.01083v2 (2017)

    Google Scholar 

  50. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.: Learning transferable architectures for scalable image recognition. arXiv:1707.070122(6) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Surówka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surówka, G. (2023). Transfer Learning from ImageNet to the Domain of Pigmented Nevi. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42505-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42504-2

  • Online ISBN: 978-3-031-42505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics