Skip to main content

ML Support for Conformity Checks in CMDB-Like Databases

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

During data input into databases like CMDB (Configuration Management Databases) we usually have a conformity check. The conventional approach is to create hundreds of rules to check data quality. This article shows several ideas on how to use ML algorithms to support the quality management of CMDB. We focus on naming conventions commonly used in CI (Configuration Items) - attributes like hostnames, serial numbers, and application names. Such attributes should be consistent with some dictionary data (operating system names, vendors) and existing relationships (location, applications). We review several strategies for feature extraction including tokenization and analyze the usability of CNB, RVAE, or NN to this particular problem. We also show the results of experiments on a public dataset (USA car database) to demonstrate the efficiency and inspire other researchers to work on similar topics. Algorithms used in the experiment are published as Jupiter Lab files.

This work is supported by the Polish Minister of Education and Science as part of an implementation doctorate, grant No. DWD/5/0286/2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babur, Ö., Cleophas, L.: Using n-grams for the automated clustering of structural models. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 510–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_40

    Chapter  Google Scholar 

  2. Chiang, F., Miller, R.J.: Discovering data quality rules. Proc. VLDB Endow. 1(1), 1166–1177 (2008)

    Article  Google Scholar 

  3. Drogseth, D., Sturm, R., Twing, D.: CMDB Systems: Making Change Work in the Age of Cloud and Agile. Morgan Kaufmann, Burlington (2015)

    Google Scholar 

  4. Eduardo, S., Nazábal, A., Williams, C.K., Sutton, C.: Robust variational autoencoders for outlier detection and repair of mixed-type data. In: International Conference on Artificial Intelligence and Statistics, pp. 4056–4066. PMLR (2020)

    Google Scholar 

  5. Eppler, M.J.: Information quality problems and current approaches. Managing Inf. Qual. 15–49 (2003)

    Google Scholar 

  6. Fan, W., Ma, S., Tang, N., Yu, W.: Interaction between record matching and data repairing. J. Data Inf. Qual. (JDIQ) 4(4), 1–38 (2014)

    Article  Google Scholar 

  7. Ilyas, I.F., Rekatsinas, T.: Machine learning and data cleaning: which serves the other? ACM J. Data Inf. Qual. (JDIQ) 14(3), 1–11 (2022)

    Article  Google Scholar 

  8. Li, J., Zhang, X., Zhao, L.: Robust federated learning based on metrics learning and unsupervised clustering for malicious data detection. In: Proceedings of the 2022 ACM Southeast Conference, pp. 238–242 (2022)

    Google Scholar 

  9. Liu, Z., Zhou, Z., Rekatsinas, T.: Picket: guarding against corrupted data in tabular data during learning and inference. VLDB J. 31(5), 927–955 (2022)

    Article  Google Scholar 

  10. Madnick, S.E., Wang, R.Y., Lee, Y.W., Zhu, H.: Overview and framework for data and information quality research. J. Data Inf. Qual. (JDIQ) 1(1), 1–22 (2009)

    Google Scholar 

  11. Nadeau, D., Turney, P.D., Matwin, S.: Unsupervised named-entity recognition: generating gazetteers and resolving ambiguity. In: Lamontagne, L., Marchand, M. (eds.) AI 2006. LNCS (LNAI), vol. 4013, pp. 266–277. Springer, Heidelberg (2006). https://doi.org/10.1007/11766247_23

    Chapter  Google Scholar 

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), pp. 616–623 (2003)

    Google Scholar 

  14. Wand, M., Jones, H.: Kernel Smoothing. Chapman and Hall, London (1995)

    Book  MATH  Google Scholar 

  15. Whitelaw, C., Patrick, J.: Evaluating corpora for named entity recognition using character-level features. In: Gedeon, T.T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 910–921. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24581-0_78

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Niewiadomski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niewiadomski, S., Mzyk, G. (2023). ML Support for Conformity Checks in CMDB-Like Databases. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14126. Springer, Cham. https://doi.org/10.1007/978-3-031-42508-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42508-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42507-3

  • Online ISBN: 978-3-031-42508-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics