Skip to main content

Abstract

The Internet of Things (IoT) is filling cities and buildings. It provides continuous monitoring and control to the point where a large proportion of everyday processes can be automated. This is possible because of the large number of devices that are available. However, one of the main challenges is securing all these devices due to the proliferation of malware aimed at manipulating data or even creating botnets attacking other sensor networks. In this paper, regardless of the network topology or even the type of malware sample infecting the sensor network, we propose a new algorithm capable of removing infected nodes from sensor networks. Two simulations on two networks with different topologies were performed to validate the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboud, A., Krauthgamer, R., Trabelsi, O.: Subcubic algorithms for Gomory-Hu tree in unweighted graphs. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1725–1737 (2021)

    Google Scholar 

  2. Hariharan, R., Kavitha, T., Panigrahi, D., Bhalgat, A.: An O(mn) Gomory-Hu tree construction algorithm for unweighted graphs. In: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 605–614 (2007)

    Google Scholar 

  3. Gupta, A., Lee, E., Li, J.: Faster exact and approximate algorithms for k-Cut. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 113–123. IEEE (2018)

    Google Scholar 

  4. Bhaskar, R., Bansal, A.: Implementing prioritized-breadth-first-search for instagram hashtag recommendation. In: 2022 12th International Conference on Cloud Computing, Data Science and Engineering (Confluence), pp. 66–70. IEEE (2022)

    Google Scholar 

  5. Shinde, N., Narayanan, V., Saunderson, J.: Memory-efficient approximation algorithms for max-k-Cut and correlation clustering. Adv. Neural. Inf. Process. Syst. 34, 8269–8281 (2021)

    Google Scholar 

  6. Guttmann-Beck, N., Hassin, R.: Approximation algorithms for minimum k-Cut. Algorithmica 27, 198–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Agrawal, S., Chopra, K.: Analysis of energy efficient narrowband internet of things (NB-IoT): LPWAN comparison, challenges, and opportunities. In: Wireless Communication with Artificial Intelligence, pp. 197–217. CRC Press (2023)

    Google Scholar 

  8. Maddikunta, P.K.R., et al.: Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 26, 100257 (2022). https://doi.org/10.1016/j.jii.2021.100257

    Article  Google Scholar 

  9. Ntafloukas, K., McCrum, D.P., Pasquale, L.: A cyber-physical risk assessment approach for internet of things enabled transportation infrastructure. Appl. Sci. 12(18), 9241 (2022)

    Article  Google Scholar 

  10. Li, S., Iqbal, M., Saxena, N.: Future industry internet of things with zero-trust security. Inf. Syst. Front. 1–14 (2022). https://doi.org/10.1007/s10796-021-10199-5

  11. Yan, W., Fu, A., Mu, Y., Zhe, X., Yu, S., Kuang, B.: EAPA: efficient attestation resilient to physical attacks for IoT devices. In: Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things, pp. 2–7 (2019)

    Google Scholar 

  12. Namasudra, S., Sharma, P., Crespo, R.G., Shanmuganathan, V.: Blockchain-based medical certificate generation and verification for IoT-based healthcare systems. IEEE Consum. Electron. Mag. 12, 83–93 (2022)

    Article  Google Scholar 

  13. Farooq, M.J., Zhu, Q.: Modeling, analysis, and mitigation of dynamic botnet formation in wireless IoT networks. IEEE Trans. Inf. Forensics Secur. 14(9), 2412–2426 (2019)

    Article  Google Scholar 

  14. Huang, Y., Zhu, Quanyan: Game-theoretic frameworks for epidemic spreading and human decision-making: a review. Dyn. Games Appl. 12(1), 7–48 (2022). https://doi.org/10.1007/s13235-022-00428-0

    Article  MathSciNet  MATH  Google Scholar 

  15. ElSawy, H., Kishk, M.A., Alouini, M.S.: Spatial firewalls: quarantining malware epidemics in large-scale massive wireless networks. IEEE Commun. Mag. 58(9), 32–38 (2020)

    Article  Google Scholar 

  16. Zhaikhan, A., Kishk, M.A., ElSawy, H., Alouini, M.S.: Safeguarding the IoT from malware epidemics: a percolation theory approach. IEEE Internet Things J. 8(7), 6039–6052 (2020)

    Article  Google Scholar 

  17. Kumar, K. D., Sudhakara, M., Poluru, R. K.: Towards the integration of blockchain and IoT for security challenges in IoT: a review. Res. Anthology on Convergence of Blockchain, Internet of Things Secur. 193–209 (2023)

    Google Scholar 

  18. Alshohoumi, F., Sarrab, M., AlHamadani, A., Al-Abri, D.: Systematic review of existing IoT architectures security and privacy issues and concerns. Int. J. Adv. Comput. Sci. Appl. 10(7), 232–251 (2019)

    Google Scholar 

  19. Fotia, L., Delicato, F., Fortino, G.: Trust in edge-based internet of things architectures: state of the art and research challenges. ACM Comput. Surv. 55(9), 1–34 (2023)

    Article  Google Scholar 

  20. del Rey, A.M., Vara, R.C., González, S.R.: A computational propagation model for malware based on the SIR classic model. Neurocomputing 484, 161–171 (2022)

    Article  Google Scholar 

  21. Hernandez Guillen, J.D., Martin del Rey, A., Casado-Vara, R.: Propagation of the malware used in APTs based on dynamic Bayesian networks. Mathematics 9(23), 3097 (2021)

    Article  Google Scholar 

  22. Guillen, J.H., Del Rey, A.M., Casado-Vara, R.: Security countermeasures of a SCIRAS model for advanced malware propagation. IEEE Access 7, 135472–135478 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Casado-Vara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Severt, M., Casado-Vara, R., del Rey, A.M., Jove, E., Quintián, H., Calvo-Rolle, J.L. (2023). Finding and Removing Infected T-Trees in IoT Networks. In: García Bringas, P., et al. International Joint Conference 16th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2023) 14th International Conference on EUropean Transnational Education (ICEUTE 2023). CISIS ICEUTE 2023 2023. Lecture Notes in Networks and Systems, vol 748. Springer, Cham. https://doi.org/10.1007/978-3-031-42519-6_14

Download citation

Publish with us

Policies and ethics