Skip to main content

Comparative Study of Regression Models Applied to the Prediction of Energy Generated by a Micro Wind Turbine

  • Conference paper
  • First Online:
18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023) (SOCO 2023)

Abstract

To create an efficient electricity system that includes renewable energy generation, able to respond correctly to the variability of power generation, it is essential to establish future production. For this reason, in this work, the performance of different regression models when predicting the energy produced by a small wind turbine based on meteorological variables is compared, seeking the best predictions. Four methods are evaluated: polynomial, bayesian, support vector machine, and artificial neural network. Several metrics are used to compare the models, such as Mean Absolute Error, Root Mean Squared Error, Mean Squared Error, Median Absolute Error and Coefficient of Determination, along with hypothesis testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornay web page. https://www.bornay.com/es (2023). Accessed 7 May 2023

  2. Sotavento web page. https://www.sotaventogalicia.com/area-tecnica/instalaciones-renovables/minieolica/ (2023). Accessed 7 May 2023

  3. Spanish power grid web page. https://www.ree.es/es/datos/generacion/potencia-instalada (2023) Accessed 10 Apr 2023

  4. Abdi, H., Williams, L.J.: Newman-keuls test and tukey test. Encycl. Res. Design 2, 897–902 (2010)

    Google Scholar 

  5. Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J.L.: Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49–60 (2019)

    Article  Google Scholar 

  6. Bishop, C.M.: Bayesian Linear Regression. Springer, New York, NY (2015). https://doi.org/10.1007/978-1-4302-5990-9_4

  7. Bromley-Trujillo, R., Holman, M.R.: Climate change policymaking in the states: A view at 2020. Publius: J. Federalism 50(3), 446–472 (2020)

    Google Scholar 

  8. Fernandez-Jimenez, L.A., et al.: Short-term power forecasting system for photovoltaic plants. Renew. Energy 44, 311–317 (2012)

    Article  Google Scholar 

  9. Infield, D., Freris, L.: Renewable energy in power systems. John Wiley & Sons (2020)

    Google Scholar 

  10. Lorenz, E., Scheidsteger, T., Hurka, J., Heinemann, D., Kurz, C.: Regional PV power prediction for improved grid integration. Prog. Photovoltaics Res. Appl. 19(7), 757–771 (2011)

    Article  Google Scholar 

  11. Montzka, S.A., Dlugokencky, E.J., Butler, J.H.: Non-co2 greenhouse gases and climate change. Nature 476(7358), 43–50 (2011)

    Article  Google Scholar 

  12. Ostertagová, E., Ostertag, O., Kováč, J.: Methodology and application of the kruskal-wallis test. Appl. Mech. Mater. 611, 115–120 (2014)

    Article  Google Scholar 

  13. PÖrtner, H.O., et al.: Climate change 2022: Impacts, adaptation and vulnerability. IPCC Geneva, Switzerland (2022)

    Google Scholar 

  14. Rayati, M., Goghari, S.A., Gheidari, Z.N., Ranjbar, A.: An optimal and decentralized transactive energy system for electrical grids with high penetration of renewable energy sources. Int. J. Electr. Power Energy Syst. 113, 850–860 (2019)

    Article  Google Scholar 

  15. Saleh, A.E., Moustafa, M.S., Abo-Al-Ez, K.M., Abdullah, A.A.: A hybrid neuro-fuzzy power prediction system for wind energy generation. Int. J. Electr. Power Energy Syst. 74, 384–395 (2016)

    Article  Google Scholar 

  16. Zayas-Gato, F., et al.: Intelligent model for active power prediction of a small wind turbine. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac040.

Download references

Acknowledgements

Míriam Timiraos’s research was supported by the “Xunta de Galicia” (Regional Government of Galicia) through grants to industrial PhD (http://gain.xunta.gal/), under the “Doutoramento Industrial 2022” grant with reference: 04_IN606D_2022_ 2692965.

Álvaro Michelena’s research was supported by the Spanish Ministry of Universities (https://www.universidades.gob.es/), under the “Formación de Profesorado Universitario” grant with reference: FPU21/00932.

CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Díaz-Longueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz-Longueira, A. et al. (2023). Comparative Study of Regression Models Applied to the Prediction of Energy Generated by a Micro Wind Turbine. In: García Bringas, P., et al. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023). SOCO 2023. Lecture Notes in Networks and Systems, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-031-42529-5_14

Download citation

Publish with us

Policies and ethics