Skip to main content

Abstract

In different fields, such as electric mobility, the increasing use of small consumer electronics devices, and the development of renewable energy alternatives, energy storage systems have become crucial to technological advancement. Batteries are among the most frequently used techniques for storing electrical energy. However, it is essential to be aware of the operating status of their load cells to achieve proper and secure operation. This study compares the efficacy of various supervised classification techniques for categorizing the operating status of a Lithium Iron Phosphate - LiFePO4 (LFP) load cell using voltage values obtained from the battery. Each method was assessed using a real dataset, and excellent results were achieved, with accuracy values of up to 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324/METRICS, https://link.springer.com/article/10.1023/A:1010933404324

  2. Caínzos López, V., et al.: Intelligent model for power cells state of charge forecasting in EV. Processes 10(7), 1406 (2022)

    Article  Google Scholar 

  3. Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Log. 13(1), 37–47 (2015)

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V., Saitta, L.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018, https://link.springer.com/article/10.1007/BF00994018

  5. Energy, R.: Powering up: Global battery demand to surge by 2030, supply headaches on the horizon (2022)

    Google Scholar 

  6. Fernandez-Serantes, L., Casteleiro-Roca, J., Calvo-Rolle, J.: Hybrid intelligent system for a half-bridge converter control and soft switching ensurement. Revista Iberoamericana de Automática e Informática industrial (2022)

    Google Scholar 

  7. Fix, E., Hodges, J.L.: Discriminatory analysis - nonparametric discrimination: consistency properties. Int. Stat. Rev. 57(3), 238 (1989). https://doi.org/10.2307/1403797

    Article  MATH  Google Scholar 

  8. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Zayas-Gato, F., Vercelli, G., Calvo-Rolle, J.L.: A one-class classifier based on a hybrid topology to detect faults in power cells. Logic J. IGPL 30(4), 679–694 (2022)

    Article  Google Scholar 

  9. LiFeBATT: Lifebatt x–1p 8ah 38123 cell. http://www.solarvan.co.uk/Life/LiFeBATT8Ah.pdf

  10. Martin, G., Rentsch, L., Höck, M., Bertau, M.: Lithium market research-global supply, future demand and price development. Energy Storage Mater. 6, 171–179 (2017)

    Article  Google Scholar 

  11. Martins, L.S., Guimarães, L.F., Junior, A.B.B., Tenório, J.A.S., Espinosa, D.C.R.: Electric car battery: an overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manage. 295, 113,091 (2021)

    Google Scholar 

  12. Michelena, A., Zayas-Gato, F., Jove, E., Fontenla-Romero, O., Calvo-Rolle, J.L.: Comparative study of anomaly detection techniques for monitoring lithium iron phosphate-lifepo4 batteries. In: Proceedings of V XoveTIC Conference. XoveTIC, vol. 14, pp. 80–82 (2023)

    Google Scholar 

  13. Porras, S., Jove, E., Baruque, B., Calvo-Rolle, J.L.: A comparative analysis of intelligent techniques to predict energy generated by a small wind turbine from atmospheric variables. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac031

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Gaussian Processes for Machine Learning (2005). https://doi.org/10.7551/MITPRESS/3206.001.0001, https://direct.mit.edu/books/book/2320/Gaussian-Processes-for-Machine-Learning

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533A0

    Article  MATH  Google Scholar 

  16. Stampatori, D., Raimondi, P.P., Noussan, M.: Li-ion batteries: a review of a key technology for transport decarbonization. Energies 13(10), 2638 (2020)

    Article  Google Scholar 

  17. Xu, C., Dai, Q., Gaines, L., Hu, M., Tukker, A., Steubing, B.: Future material demand for automotive lithium-based batteries. Commun. Mater. 1(1), 99 (2020)

    Article  Google Scholar 

  18. Zayas-Gato, F., et al.: Intelligent model for active power prediction of a small wind turbine. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac040

    Article  Google Scholar 

  19. Zayas-Gato, F., et al.: A distributed topology for identifying anomalies in an industrial environment. Neural Comput. Appl. 34(23), 20463–20476 (2022). https://doi.org/10.1007/s00521-022-07106-7, https://link.springer.com/10.1007/s00521-022-07106-7

  20. Zayas-Gato, F., Michelena, Quintián, H., Jove, E., Casteleiro-Roca, J.L., Leitão, P., Luis Calvo-Rolle, J.: A novel method for anomaly detection using beta Hebbian learning and principal component analysis. Logic J. IGPL 31(2), 390–399 (2022). https://doi.org/10.1093/jigpal/jzac026

  21. Zayas-Gato, F., et al.: A novel method for anomaly detection using beta hebbian learning and principal component analysis. Logic J. IGPL 31(2), 390–399 (2023). https://doi.org/10.1093/jigpal/jzac026, https://academic.oup.com/jigpal/article/31/2/390/6532160

Download references

Acknowledgement

Álvaro Michelena’s research was supported by the Spanish Ministry of Universities (https://www.universidades.gob.es/), under the “Formación de Profesorado Universitario” grant with reference FPU21/00932.

Míriam Timiraos’s research was supported by the “Xunta de Galicia” (Regional Government of Galicia) through grants to industrial PhD (http://gain.xunta.gal/), under the “Doutoramento Industrial 2022” grant with reference: 04_IN606D_2022_2692965.

CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Michelena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michelena, Á. et al. (2023). Machine Learning Based System for Detecting Battery State-of-Health. In: García Bringas, P., et al. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023). SOCO 2023. Lecture Notes in Networks and Systems, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-031-42529-5_16

Download citation

Publish with us

Policies and ethics