Skip to main content

Extended Rank-Based Ant Colony Optimization Algorithm for Traveling Salesman Problem

  • Conference paper
  • First Online:
18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023) (SOCO 2023)

Abstract

The optimization of the Traveling Salesman Problem (TSP) is a widely studied combinatorial optimization problem with applications in transportation and logistics. This paper proposes an Ant Colony Optimization (ACO) algorithm for effectively solving the TSP. The approach combines a rank-based selection strategy that considers both the originality and fitness of solutions, along with a pheromone smoothing mechanism that diversifies the search, improving the algorithm’s performance. Additionally, the algorithm is coupled with a local search heuristic, which significantly enhances the obtained solutions. The experimental results indicate that the proposed algorithm outperforms well-known ACO variants, as well as recent hybridized ACO variants, across a range of benchmark TSP instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank-based version of the ant system: a computational study. Cent. Eur. J. Oper. Res. Econ. 7(1), 25–38 (1999)

    MathSciNet  Google Scholar 

  2. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  3. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 311–351. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_8

  4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  5. Gao, W.: New ant colony optimization algorithm for the traveling salesman problem. Int. J. Comput. Intel. Syst. 13(1), 44–55 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ilin, V., Simić, D., Simić, S.D., Simić, S.: Hybrid genetic algorithms and tour construction and improvement algorithms used for optimizing the traveling salesman problem. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 530–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_51

    Chapter  Google Scholar 

  7. Oliveira, S.M., Bezerra, L.C.T., Stützle, T., Dorigo, M., Wanner, E.F., Souza, S.R.: A computational study on ant colony optimization for the traveling salesman problem with dynamic demands. Comput. Oper. Res. 135, 105359 (2021)

    Article  MathSciNet  Google Scholar 

  8. Pérez-Carabaza, S., Gálvez, A., Iglesias, A.: Rank-based ant system with originality reinforcement and pheromone smoothing. Appl. Sci. 12(21), 11219 (2022)

    Article  Google Scholar 

  9. Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  Google Scholar 

  10. Rokbani, N., Kromer, P., Twir, I., Alimi, A.M.: A new hybrid gravitational particle Swarm Optimisation - ACO with local search mechanism, PSOGSA-ACO-Ls for TSP. Int. J. Intell. Eng. Inf. 7(4), 384–398 (2019)

    Google Scholar 

  11. Rokbani, N., et al.: Bi-heuristic ant colony optimization-based approaches for traveling salesman problem. Soft. Comput. 25, 3775–3794 (2021). https://doi.org/10.1007/s00500-020-05406-5

    Article  Google Scholar 

  12. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Fut. Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  Google Scholar 

  13. Tuani, A.F., Keedwell, E., Collett, M.: Heterogenous adaptive ant colony optimization with 3-opt local search for the travelling salesman problem. Appl. Soft Comput. 97, 106720 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Pérez-Carabaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Carabaza, S., Gálvez, A., Iglesias, A. (2023). Extended Rank-Based Ant Colony Optimization Algorithm for Traveling Salesman Problem. In: García Bringas, P., et al. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023). SOCO 2023. Lecture Notes in Networks and Systems, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-031-42529-5_2

Download citation

Publish with us

Policies and ethics